具有非凸非光滑项的非凸线性最小问题的近似近似梯度算法

IF 1.8 3区 数学 Q1 Mathematics
Jiefei He, Huiling Zhang, Zi Xu
{"title":"具有非凸非光滑项的非凸线性最小问题的近似近似梯度算法","authors":"Jiefei He, Huiling Zhang, Zi Xu","doi":"10.1007/s10898-024-01383-3","DOIUrl":null,"url":null,"abstract":"<p>Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an <span>\\(\\varepsilon \\)</span>-stationary point is upper bounded by <span>\\({\\mathcal {O}}(\\varepsilon ^{-3})\\)</span>. Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms\",\"authors\":\"Jiefei He, Huiling Zhang, Zi Xu\",\"doi\":\"10.1007/s10898-024-01383-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an <span>\\\\(\\\\varepsilon \\\\)</span>-stationary point is upper bounded by <span>\\\\({\\\\mathcal {O}}(\\\\varepsilon ^{-3})\\\\)</span>. Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01383-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01383-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

非凸最小问题在机器学习、无线通信和许多其他领域引起了极大关注。本文提出了一种高效的近似梯度算法,用于求解一类带有非凸非光滑项的非凸线性 minimax 问题,且找到 \(\varepsilon \)-驻点的迭代次数上界为\({\mathcal {O}}(\varepsilon ^{-3})\)。在大规模 MIMO 系统中的单比特预编码问题和分布式非凸优化问题上的一些数值结果证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms

An approximation proximal gradient algorithm for nonconvex-linear minimax problems with nonconvex nonsmooth terms

Nonconvex minimax problems have attracted significant attention in machine learning, wireless communication and many other fields. In this paper, we propose an efficient approximation proximal gradient algorithm for solving a class of nonsmooth nonconvex-linear minimax problems with a nonconvex nonsmooth term, and the number of iteration to find an \(\varepsilon \)-stationary point is upper bounded by \({\mathcal {O}}(\varepsilon ^{-3})\). Some numerical results on one-bit precoding problem in massive MIMO system and a distributed non-convex optimization problem demonstrate the effectiveness of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信