Dirichlet 数列的切比雪夫子空间

IF 0.2 Q4 MATHEMATICS
{"title":"Dirichlet 数列的切比雪夫子空间","authors":"","doi":"10.3103/s0027132223060037","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>Haar and Kolmogorov found the necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, it is proved that subspaces of Dirichlet series form Chebyshev subspaces in the space of <span> <span>\\(\\mathbf{C}(0,\\infty]\\)</span> </span> of continuous and bounded functions in the interval <span> <span>\\((0,\\infty)\\)</span> </span> that have a limit at infinity.</p> </span>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chebyshev Subspaces of Dirichlet Series\",\"authors\":\"\",\"doi\":\"10.3103/s0027132223060037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>Haar and Kolmogorov found the necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, it is proved that subspaces of Dirichlet series form Chebyshev subspaces in the space of <span> <span>\\\\(\\\\mathbf{C}(0,\\\\infty]\\\\)</span> </span> of continuous and bounded functions in the interval <span> <span>\\\\((0,\\\\infty)\\\\)</span> </span> that have a limit at infinity.</p> </span>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132223060037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223060037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 哈尔和科尔莫戈罗夫发现了任意紧凑集上连续函数空间中的有限维子空间是切比雪夫子空间的必要条件和充分条件。本文证明了在区间 \((0,\infty)\)中的连续有界函数的 \(\mathbf{C}(0,\infty]\) 空间中,在无穷远处有一个极限的 Dirichlet 级数的子空间构成切比雪夫子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chebyshev Subspaces of Dirichlet Series

Abstract

Haar and Kolmogorov found the necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, it is proved that subspaces of Dirichlet series form Chebyshev subspaces in the space of \(\mathbf{C}(0,\infty]\) of continuous and bounded functions in the interval \((0,\infty)\) that have a limit at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信