论生物进化模型中出现的科尔莫戈罗夫-费勒方程的解法

IF 0.2 Q4 MATHEMATICS
O. S. Rozanova
{"title":"论生物进化模型中出现的科尔莫戈罗夫-费勒方程的解法","authors":"O. S. Rozanova","doi":"10.3103/s0027132223060062","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper considers Kolmogorov–Feller equation for the probability density of a Markov process on a half-axis, which arises in important problems of biology. This process consists of random jumps distributed according to the Laplace law and a deterministic return to zero. It is shown that the Green function for such an equation can be found both in the form of a series and in explicit form for some ratios of the parameters. This allows finding explicit solutions to the Kolmogorov–Feller equation for many initial data.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Solution to the Kolmogorov-Feller Equation Arising in a Biological Evolution Model\",\"authors\":\"O. S. Rozanova\",\"doi\":\"10.3103/s0027132223060062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper considers Kolmogorov–Feller equation for the probability density of a Markov process on a half-axis, which arises in important problems of biology. This process consists of random jumps distributed according to the Laplace law and a deterministic return to zero. It is shown that the Green function for such an equation can be found both in the form of a series and in explicit form for some ratios of the parameters. This allows finding explicit solutions to the Kolmogorov–Feller equation for many initial data.</p>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132223060062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223060062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了半轴上马尔可夫过程概率密度的科尔莫哥罗德-费勒方程,该过程出现在重要的生物学问题中。该过程由根据拉普拉斯定律分布的随机跳跃和确定性归零组成。研究表明,这种方程的格林函数既可以数列形式求得,也可以某些参数比的显式形式求得。这样就可以为许多初始数据找到科尔莫哥罗德-费勒方程的显式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Solution to the Kolmogorov-Feller Equation Arising in a Biological Evolution Model

On the Solution to the Kolmogorov-Feller Equation Arising in a Biological Evolution Model

Abstract

The paper considers Kolmogorov–Feller equation for the probability density of a Markov process on a half-axis, which arises in important problems of biology. This process consists of random jumps distributed according to the Laplace law and a deterministic return to zero. It is shown that the Green function for such an equation can be found both in the form of a series and in explicit form for some ratios of the parameters. This allows finding explicit solutions to the Kolmogorov–Feller equation for many initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信