证明逻辑尖锐模型中术语的规范化 LP

IF 0.2 Q4 MATHEMATICS
{"title":"证明逻辑尖锐模型中术语的规范化 LP","authors":"","doi":"10.3103/s0027132223060049","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>A basic justification model is sharp when the evidence term constructors <span> <span>\\(\\cdot,+,!\\)</span> </span> in it mean exactly the application of modus ponens rule, the union and the verification of evidences. We construct an example of a sharp model for the logic of proofs <span>LP</span> and establish that in any sharp model of <span>LP</span> every proof term is equivalent to some proof polynomial.</p> </span>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalization of Terms in Sharp Models of Logic of Proofs LP\",\"authors\":\"\",\"doi\":\"10.3103/s0027132223060049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>A basic justification model is sharp when the evidence term constructors <span> <span>\\\\(\\\\cdot,+,!\\\\)</span> </span> in it mean exactly the application of modus ponens rule, the union and the verification of evidences. We construct an example of a sharp model for the logic of proofs <span>LP</span> and establish that in any sharp model of <span>LP</span> every proof term is equivalent to some proof polynomial.</p> </span>\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0027132223060049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132223060049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 当一个基本证明模型中的证据项构造函数(\cdot,+,!\)恰好意味着模态规则的应用、证据的联合和验证时,这个基本证明模型就是尖锐的。我们为证明逻辑 LP 构建了一个尖锐模型的例子,并确定在 LP 的任何尖锐模型中,每个证明项都等价于某个证明多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalization of Terms in Sharp Models of Logic of Proofs LP

Abstract

A basic justification model is sharp when the evidence term constructors \(\cdot,+,!\) in it mean exactly the application of modus ponens rule, the union and the verification of evidences. We construct an example of a sharp model for the logic of proofs LP and establish that in any sharp model of LP every proof term is equivalent to some proof polynomial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信