数据驱动半经验电子结构计算的集成工作流程和接口

Pavel Stishenko, Adam McSloy, Berk Onat, Ben Hourahine, Reinhard J. Maurer, James R. Kermode, Andrew Logsdail
{"title":"数据驱动半经验电子结构计算的集成工作流程和接口","authors":"Pavel Stishenko, Adam McSloy, Berk Onat, Ben Hourahine, Reinhard J. Maurer, James R. Kermode, Andrew Logsdail","doi":"arxiv-2403.15625","DOIUrl":null,"url":null,"abstract":"Modern software engineering of electronic structure codes has seen a paradigm\nshift from monolithic workflows towards object-based modularity. Software\nobjectivity allows for greater flexibility in the application of electronic\nstructure calculations, with particular benefits when integrated with\napproaches for data-driven analysis. Here, we discuss different approaches to\ncreate \"deep\" modular interfaces that connect big-data workflows and electronic\nstructure codes, and explore the diversity of use cases that they can enable.\nWe present two such interface approaches for the semi-empirical electronic\nstructure package, DFTB+. In one case, DFTB+ is applied as a library and\nprovides data to an external workflow; and in another, DFTB+ receives data via\nexternal bindings and processes the information subsequently within an internal\nworkflow. We provide a general framework to enable data exchange workflows for\nembedding new machine-learning-based Hamiltonians within DFTB+, or to enabling\ndeep integration of DFTB+ in multiscale embedding workflows. These modular\ninterfaces demonstrate opportunities in emergent software and workflows to\naccelerate scientific discovery by harnessing existing software capabilities.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"233 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations\",\"authors\":\"Pavel Stishenko, Adam McSloy, Berk Onat, Ben Hourahine, Reinhard J. Maurer, James R. Kermode, Andrew Logsdail\",\"doi\":\"arxiv-2403.15625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern software engineering of electronic structure codes has seen a paradigm\\nshift from monolithic workflows towards object-based modularity. Software\\nobjectivity allows for greater flexibility in the application of electronic\\nstructure calculations, with particular benefits when integrated with\\napproaches for data-driven analysis. Here, we discuss different approaches to\\ncreate \\\"deep\\\" modular interfaces that connect big-data workflows and electronic\\nstructure codes, and explore the diversity of use cases that they can enable.\\nWe present two such interface approaches for the semi-empirical electronic\\nstructure package, DFTB+. In one case, DFTB+ is applied as a library and\\nprovides data to an external workflow; and in another, DFTB+ receives data via\\nexternal bindings and processes the information subsequently within an internal\\nworkflow. We provide a general framework to enable data exchange workflows for\\nembedding new machine-learning-based Hamiltonians within DFTB+, or to enabling\\ndeep integration of DFTB+ in multiscale embedding workflows. These modular\\ninterfaces demonstrate opportunities in emergent software and workflows to\\naccelerate scientific discovery by harnessing existing software capabilities.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"233 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.15625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.15625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代电子结构代码软件工程已经从单一的工作流程向基于对象的模块化模式转变。软件对象性使电子结构计算的应用具有更大的灵活性,在与数据驱动分析方法相结合时具有特别的优势。在此,我们讨论了创建连接大数据工作流和电子结构代码的 "深度 "模块化接口的不同方法,并探讨了这些方法所能支持的各种用例。在一种情况下,DFTB+ 作为库应用,并向外部工作流提供数据;而在另一种情况下,DFTB+ 通过外部绑定接收数据,并随后在内部工作流中处理信息。我们提供了一个通用框架,使数据交换工作流能够在DFTB+中嵌入新的基于机器学习的哈密顿,或将DFTB+深度集成到多尺度嵌入工作流中。这些模块化接口展示了新兴软件和工作流中的机遇,通过利用现有软件能力加速科学发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations
Modern software engineering of electronic structure codes has seen a paradigm shift from monolithic workflows towards object-based modularity. Software objectivity allows for greater flexibility in the application of electronic structure calculations, with particular benefits when integrated with approaches for data-driven analysis. Here, we discuss different approaches to create "deep" modular interfaces that connect big-data workflows and electronic structure codes, and explore the diversity of use cases that they can enable. We present two such interface approaches for the semi-empirical electronic structure package, DFTB+. In one case, DFTB+ is applied as a library and provides data to an external workflow; and in another, DFTB+ receives data via external bindings and processes the information subsequently within an internal workflow. We provide a general framework to enable data exchange workflows for embedding new machine-learning-based Hamiltonians within DFTB+, or to enabling deep integration of DFTB+ in multiscale embedding workflows. These modular interfaces demonstrate opportunities in emergent software and workflows to accelerate scientific discovery by harnessing existing software capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信