{"title":"质量次临界分数 NLS方程受约束最小化的极限行为","authors":"Jie Yang, Haibo Chen, Lintao Liu","doi":"10.1007/s13324-024-00899-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the asymptotic properties of solutions for the constrained minimization problems. </p><div><div><span>$$\\begin{aligned} d_{b_p}(p):=\\inf _{\\{u\\in H^s_V({\\mathbb {R}}^2): \\int _{{\\mathbb {R}}^2}|u|^2dx=1\\}}I_{p,b_p}(u), \\end{aligned}$$</span></div></div><p>where <span>\\(s\\in (\\frac{1}{2},1),\\)</span> <span>\\(p\\in (0, 2s)\\)</span>, <span>\\(b_p>0\\)</span> and </p><div><div><span>$$\\begin{aligned} I_{p,b_p}(u){:=}\\frac{1}{2}\\int _{{\\mathbb {R}}^2}\\left( |(-\\Delta )^{\\frac{s}{2}}u|^2{+}V(x)|u|^2\\right) dx{-}\\frac{b_p}{p+2}\\int _{{\\mathbb {R}}^2}|u|^{p+2}dx,\\quad u\\in H^s_V({\\mathbb {R}}^2). \\end{aligned}$$</span></div></div><p>First, when <span>\\(\\lim _{p\\nearrow 2s}b_p=b<b^*\\)</span>, the set of minimizers of <span>\\(d_{b_p}(p)\\)</span> is compact in a suitable space as <span>\\(p\\nearrow 2s\\)</span>. In addition, when <span>\\(\\lim _{p\\nearrow 2s}b_p=b\\ge b^*\\)</span>, by developing suitable trial functions for some fine energy estimates, we prove that all minimizers must blow up and give decay properties of minimizers.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting behaviors of constrained minimizers for the mass subcritical fractional NLS equations\",\"authors\":\"Jie Yang, Haibo Chen, Lintao Liu\",\"doi\":\"10.1007/s13324-024-00899-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the asymptotic properties of solutions for the constrained minimization problems. </p><div><div><span>$$\\\\begin{aligned} d_{b_p}(p):=\\\\inf _{\\\\{u\\\\in H^s_V({\\\\mathbb {R}}^2): \\\\int _{{\\\\mathbb {R}}^2}|u|^2dx=1\\\\}}I_{p,b_p}(u), \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(s\\\\in (\\\\frac{1}{2},1),\\\\)</span> <span>\\\\(p\\\\in (0, 2s)\\\\)</span>, <span>\\\\(b_p>0\\\\)</span> and </p><div><div><span>$$\\\\begin{aligned} I_{p,b_p}(u){:=}\\\\frac{1}{2}\\\\int _{{\\\\mathbb {R}}^2}\\\\left( |(-\\\\Delta )^{\\\\frac{s}{2}}u|^2{+}V(x)|u|^2\\\\right) dx{-}\\\\frac{b_p}{p+2}\\\\int _{{\\\\mathbb {R}}^2}|u|^{p+2}dx,\\\\quad u\\\\in H^s_V({\\\\mathbb {R}}^2). \\\\end{aligned}$$</span></div></div><p>First, when <span>\\\\(\\\\lim _{p\\\\nearrow 2s}b_p=b<b^*\\\\)</span>, the set of minimizers of <span>\\\\(d_{b_p}(p)\\\\)</span> is compact in a suitable space as <span>\\\\(p\\\\nearrow 2s\\\\)</span>. In addition, when <span>\\\\(\\\\lim _{p\\\\nearrow 2s}b_p=b\\\\ge b^*\\\\)</span>, by developing suitable trial functions for some fine energy estimates, we prove that all minimizers must blow up and give decay properties of minimizers.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00899-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00899-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了受约束最小化问题解的渐近特性。$$\begin{aligned} d_{b_p}(p):=\inf _\{u\in H^s_V({\mathbb {R}}^2):\int _{{mathbb {R}}^2}|u|^2dx=1\}}I_{p,b_p}(u), \end{aligned}$$ 其中 \(s\in (\frac{1}{2},1),\)\(p\in (0, 2s)\),\(b_p>0\) and $$$\begin{aligned}I_{p,b_p}(u){:=}\frac{1}{2}\int _{{\mathbb {R}}^2}}\left( |(-\Delta )^{\frac{s}{2}}}u|^2{+}V(x)|u|^2\right) dx{-}\frac{b_p}{p+2}\int _{{\mathbb {R}}^2}|u|^{p+2}dx,\quad u\in H^s_V({\mathbb {R}}^2).\end{aligned}$$First, when \(\lim _{p\nearrow 2s}b_p=b<b^*\), the set of minimizers of \(d_{b_p}(p)\) is compact in a suitable space as \(p/nearrow 2s\)。此外,当 \(\lim _{p\nearrow 2s}b_p=b\ge b^*\)时,通过为一些精细的能量估计建立合适的试函数,我们证明了所有的最小值都必须炸毁,并给出了最小值的衰变特性。
First, when \(\lim _{p\nearrow 2s}b_p=b<b^*\), the set of minimizers of \(d_{b_p}(p)\) is compact in a suitable space as \(p\nearrow 2s\). In addition, when \(\lim _{p\nearrow 2s}b_p=b\ge b^*\), by developing suitable trial functions for some fine energy estimates, we prove that all minimizers must blow up and give decay properties of minimizers.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.