薄周期性断裂圆柱体中的标量边界值问题的均质化

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020113
S. A. Nazarov, A. S. Slutskii
{"title":"薄周期性断裂圆柱体中的标量边界值问题的均质化","authors":"S. A. Nazarov, A. S. Slutskii","doi":"10.1134/s0037446624020113","DOIUrl":null,"url":null,"abstract":"<p>Homogenization of the Neumann problem for a differential equation\nin a periodically broken multidimensional cylinder\nleads to a second-order ordinary differential equation.\nWe study asymptotics for the coefficient of the averaged operator\nin the case of small transverse cross-sections.\nThe main asymptotic term depends on\nthe “area” of cross-sections of the links,\ntheir lengths,\nand the coefficient matrix of the original operator.\nWe find the characteristics of kink zones which affect correction terms,\nwhile the asymptotic remainder becomes exponentially small.\nThe justification of the asymptotics\nis based on Friedrichs’s inequality\nwith a coefficient independent of both small parameters:\nthe period of fractures and the relative diameter of cross-sections.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder\",\"authors\":\"S. A. Nazarov, A. S. Slutskii\",\"doi\":\"10.1134/s0037446624020113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Homogenization of the Neumann problem for a differential equation\\nin a periodically broken multidimensional cylinder\\nleads to a second-order ordinary differential equation.\\nWe study asymptotics for the coefficient of the averaged operator\\nin the case of small transverse cross-sections.\\nThe main asymptotic term depends on\\nthe “area” of cross-sections of the links,\\ntheir lengths,\\nand the coefficient matrix of the original operator.\\nWe find the characteristics of kink zones which affect correction terms,\\nwhile the asymptotic remainder becomes exponentially small.\\nThe justification of the asymptotics\\nis based on Friedrichs’s inequality\\nwith a coefficient independent of both small parameters:\\nthe period of fractures and the relative diameter of cross-sections.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了小横截面情况下平均算子系数的渐近学。主要的渐近项取决于链接横截面的 "面积"、其长度和原始算子的系数矩阵。我们发现了影响修正项的扭结区的特征,而渐近余量变得指数级小。渐近的理由是基于弗里德里希不等式,其系数与两个小参数(断裂周期和横截面的相对直径)无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder

分享
查看原文
Homogenization of the Scalar Boundary Value Problem in a Thin Periodically Broken Cylinder

Homogenization of the Neumann problem for a differential equation in a periodically broken multidimensional cylinder leads to a second-order ordinary differential equation. We study asymptotics for the coefficient of the averaged operator in the case of small transverse cross-sections. The main asymptotic term depends on the “area” of cross-sections of the links, their lengths, and the coefficient matrix of the original operator. We find the characteristics of kink zones which affect correction terms, while the asymptotic remainder becomes exponentially small. The justification of the asymptotics is based on Friedrichs’s inequality with a coefficient independent of both small parameters: the period of fractures and the relative diameter of cross-sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信