具有永久和脉冲收获的球面 KPP 模型中时间平均收获最大值的存在性

IF 0.5 4区 数学 Q3 MATHEMATICS
E. V. Vinnikov, A. A. Davydov, D. V. Tunitsky
{"title":"具有永久和脉冲收获的球面 KPP 模型中时间平均收获最大值的存在性","authors":"E. V. Vinnikov,&nbsp;A. A. Davydov,&nbsp;D. V. Tunitsky","doi":"10.1134/S1064562423701387","DOIUrl":null,"url":null,"abstract":"<p>A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 3","pages":"472 - 476"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a Maximum of Time-Averaged Harvesting in the KPP Model on Sphere with Permanent and Impulse Harvesting\",\"authors\":\"E. V. Vinnikov,&nbsp;A. A. Davydov,&nbsp;D. V. Tunitsky\",\"doi\":\"10.1134/S1064562423701387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 3\",\"pages\":\"472 - 476\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701387\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701387","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在一个二维球体上考虑任何性质的分布式可再生资源。该资源的动态由 Kolmogorov-Petrovsky-Piskunov-Fisher 型模型描述,资源的开发利用是通过恒定或周期性脉冲采伐进行的。研究表明,在选择一种可接受的开采策略后,资源的动力学趋向于与该策略相对应的极限动力学,并且存在一种可接受的收获策略,该策略可使资源的时间平均收获量最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of a Maximum of Time-Averaged Harvesting in the KPP Model on Sphere with Permanent and Impulse Harvesting

A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信