{"title":"具有永久和脉冲收获的球面 KPP 模型中时间平均收获最大值的存在性","authors":"E. V. Vinnikov, A. A. Davydov, D. V. Tunitsky","doi":"10.1134/S1064562423701387","DOIUrl":null,"url":null,"abstract":"<p>A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 3","pages":"472 - 476"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a Maximum of Time-Averaged Harvesting in the KPP Model on Sphere with Permanent and Impulse Harvesting\",\"authors\":\"E. V. Vinnikov, A. A. Davydov, D. V. Tunitsky\",\"doi\":\"10.1134/S1064562423701387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 3\",\"pages\":\"472 - 476\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701387\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701387","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of a Maximum of Time-Averaged Harvesting in the KPP Model on Sphere with Permanent and Impulse Harvesting
A distributed renewable resource of any nature is considered on a two-dimensional sphere. Its dynamics is described by a model of the Kolmogorov–Petrovsky–Piskunov–Fisher type, and the exploitation of this resource is carried out by constant or periodic impulse harvesting. It is shown that, after choosing an admissible exploitation strategy, the dynamics of the resource tend to limiting dynamics corresponding to this strategy and there is an admissible harvesting strategy that maximizes the time-averaged harvesting of the resource.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.