论丹乔伊-欣钦因与 $ \operatorname{HK}_{r} $ - 积分的关系

Pub Date : 2024-03-01 DOI:10.1134/s0037446624020162
{"title":"论丹乔伊-欣钦因与 $ \\operatorname{HK}_{r} $ - 积分的关系","authors":"","doi":"10.1134/s0037446624020162","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We locate Musial and Sagher’s concept of <span> <span>\\( \\operatorname{HK}_{r} \\)</span> </span>-integration within the approximate Henstock–Kurzweil integral theory. If we restrict the <span> <span>\\( \\operatorname{HK}_{r} \\)</span> </span>-integral by the requirement that the indefinite <span> <span>\\( \\operatorname{HK}_{r} \\)</span> </span>-integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Relation between Denjoy–Khintchine and $ \\\\operatorname{HK}_{r} $ -Integrals\",\"authors\":\"\",\"doi\":\"10.1134/s0037446624020162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We locate Musial and Sagher’s concept of <span> <span>\\\\( \\\\operatorname{HK}_{r} \\\\)</span> </span>-integration within the approximate Henstock–Kurzweil integral theory. If we restrict the <span> <span>\\\\( \\\\operatorname{HK}_{r} \\\\)</span> </span>-integral by the requirement that the indefinite <span> <span>\\\\( \\\\operatorname{HK}_{r} \\\\)</span> </span>-integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们将 Musial 和 Sagher 的 \( \operatorname{HK}_{r} \) -integration 概念置于近似 Henstock-Kurzweil 积分理论中。如果我们限制 \( \operatorname{HK}_{r} \) -积分,要求不确定的 \( \operatorname{HK}_{r} \) -积分是连续的,那么它就会包含在经典的登乔伊-金廷积分中。我们提供了一个直接论证,证明这种包含是适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Relation between Denjoy–Khintchine and $ \operatorname{HK}_{r} $ -Integrals

Abstract

We locate Musial and Sagher’s concept of \( \operatorname{HK}_{r} \) -integration within the approximate Henstock–Kurzweil integral theory. If we restrict the \( \operatorname{HK}_{r} \) -integral by the requirement that the indefinite \( \operatorname{HK}_{r} \) -integral is continuous, then it becomes included in the classical Denjoy–Khintchine integral. We provide a direct argument demonstrating that this inclusion is proper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信