论具有非enerate 内核的自兼偏积分算子的谱特性

Pub Date : 2024-03-01 DOI:10.1134/s0037446624020204
{"title":"论具有非enerate 内核的自兼偏积分算子的谱特性","authors":"","doi":"10.1134/s0037446624020204","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider bounded selfadjoint linear integral operators <span> <span>\\( T_{1} \\)</span> </span> and <span> <span>\\( T_{2} \\)</span> </span> in the Hilbert space <span> <span>\\( L_{2}([a,b]\\times[c,d]) \\)</span> </span> which are usually called partial integral operators. We assume that <span> <span>\\( T_{1} \\)</span> </span> acts on a function <span> <span>\\( f(x,y) \\)</span> </span> in the first argument and performs integration in <span> <span>\\( x \\)</span> </span>, while <span> <span>\\( T_{2} \\)</span> </span> acts on <span> <span>\\( f(x,y) \\)</span> </span> in the second argument and performs integration in <span> <span>\\( y \\)</span> </span>. We assume further that <span> <span>\\( T_{1} \\)</span> </span> and <span> <span>\\( T_{2} \\)</span> </span> are bounded but not compact, whereas <span> <span>\\( T_{1}T_{2} \\)</span> </span> is compact and <span> <span>\\( T_{1}T_{2}=T_{2}T_{1} \\)</span> </span>. Partial integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrödinger operators. We study the spectral properties of <span> <span>\\( T_{1} \\)</span> </span>, <span> <span>\\( T_{2} \\)</span> </span>, and <span> <span>\\( T_{1}+T_{2} \\)</span> </span> with nondegenerate kernels and established some formula for the essential spectra of <span> <span>\\( T_{1} \\)</span> </span> and <span> <span>\\( T_{2} \\)</span> </span>. Furthermore, we demonstrate that the discrete spectra of <span> <span>\\( T_{1} \\)</span> </span> and <span> <span>\\( T_{2} \\)</span> </span> are empty, and prove a theorem on the structure of the essential spectrum of <span> <span>\\( T_{1}+T_{2} \\)</span> </span>. Also, under study is the problem of existence of countably many eigenvalues in the discrete spectrum of <span> <span>\\( T_{1}+T_{2} \\)</span> </span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel\",\"authors\":\"\",\"doi\":\"10.1134/s0037446624020204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We consider bounded selfadjoint linear integral operators <span> <span>\\\\( T_{1} \\\\)</span> </span> and <span> <span>\\\\( T_{2} \\\\)</span> </span> in the Hilbert space <span> <span>\\\\( L_{2}([a,b]\\\\times[c,d]) \\\\)</span> </span> which are usually called partial integral operators. We assume that <span> <span>\\\\( T_{1} \\\\)</span> </span> acts on a function <span> <span>\\\\( f(x,y) \\\\)</span> </span> in the first argument and performs integration in <span> <span>\\\\( x \\\\)</span> </span>, while <span> <span>\\\\( T_{2} \\\\)</span> </span> acts on <span> <span>\\\\( f(x,y) \\\\)</span> </span> in the second argument and performs integration in <span> <span>\\\\( y \\\\)</span> </span>. We assume further that <span> <span>\\\\( T_{1} \\\\)</span> </span> and <span> <span>\\\\( T_{2} \\\\)</span> </span> are bounded but not compact, whereas <span> <span>\\\\( T_{1}T_{2} \\\\)</span> </span> is compact and <span> <span>\\\\( T_{1}T_{2}=T_{2}T_{1} \\\\)</span> </span>. Partial integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrödinger operators. We study the spectral properties of <span> <span>\\\\( T_{1} \\\\)</span> </span>, <span> <span>\\\\( T_{2} \\\\)</span> </span>, and <span> <span>\\\\( T_{1}+T_{2} \\\\)</span> </span> with nondegenerate kernels and established some formula for the essential spectra of <span> <span>\\\\( T_{1} \\\\)</span> </span> and <span> <span>\\\\( T_{2} \\\\)</span> </span>. Furthermore, we demonstrate that the discrete spectra of <span> <span>\\\\( T_{1} \\\\)</span> </span> and <span> <span>\\\\( T_{2} \\\\)</span> </span> are empty, and prove a theorem on the structure of the essential spectrum of <span> <span>\\\\( T_{1}+T_{2} \\\\)</span> </span>. Also, under study is the problem of existence of countably many eigenvalues in the discrete spectrum of <span> <span>\\\\( T_{1}+T_{2} \\\\)</span> </span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们考虑希尔伯特空间 \( L_{2}([a,b]\times[c,d]) \)中的有界自交线性积分算子 \( T_{1} \)和 \( T_{2} \),它们通常被称为部分积分算子。我们假设 \( T_{1} \) 作用于函数 \( f(x,y) \) 的第一个参数并在\( x \) 中执行积分,而 \( T_{2} \) 作用于函数 \( f(x,y) \) 的第二个参数并在\( y \) 中执行积分。我们进一步假设 \( T_{1} \) 和 \( T_{2} \) 有界但不紧凑,而 \( T_{1}T_{2} \) 紧凑且 \( T_{1}T_{2}=T_{2}T_{1} \) 。偏积分算子出现在力学、积分微分方程理论和薛定谔算子理论等多个领域。我们研究了 \( T_{1} \) , \( T_{2} \) , 和 \( T_{1}+T_{2} \) 的谱性质,并建立了 \( T_{1} \) 和 \( T_{2} \) 的本质谱公式。此外,我们证明了 \( T_{1} \) 和 \( T_{2} \) 的离散谱是空的,并证明了 \( T_{1}+T_{2} \) 的本质谱结构定理。此外,我们还研究了 \( T_{1}+T_{2} \) 的离散谱中存在可数个特征值的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel

Abstract

We consider bounded selfadjoint linear integral operators  \( T_{1} \) and  \( T_{2} \) in the Hilbert space \( L_{2}([a,b]\times[c,d]) \) which are usually called partial integral operators. We assume that  \( T_{1} \) acts on a function  \( f(x,y) \) in the first argument and performs integration in  \( x \) , while  \( T_{2} \) acts on  \( f(x,y) \) in the second argument and performs integration in  \( y \) . We assume further that  \( T_{1} \) and  \( T_{2} \) are bounded but not compact, whereas  \( T_{1}T_{2} \) is compact and \( T_{1}T_{2}=T_{2}T_{1} \) . Partial integral operators arise in various areas of mechanics, the theory of integro-differential equations, and the theory of Schrödinger operators. We study the spectral properties of  \( T_{1} \) , \( T_{2} \) , and \( T_{1}+T_{2} \) with nondegenerate kernels and established some formula for the essential spectra of  \( T_{1} \) and  \( T_{2} \) . Furthermore, we demonstrate that the discrete spectra of  \( T_{1} \) and  \( T_{2} \) are empty, and prove a theorem on the structure of the essential spectrum of  \( T_{1}+T_{2} \) . Also, under study is the problem of existence of countably many eigenvalues in the discrete spectrum of  \( T_{1}+T_{2} \) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信