S. A. Barannikov, A. A. Korotin, D. A. Oganesyan, D. I. Emtsev, E. V. Burnaev
{"title":"条形码作为损失函数拓扑结构的总结","authors":"S. A. Barannikov, A. A. Korotin, D. A. Oganesyan, D. I. Emtsev, E. V. Burnaev","doi":"10.1134/S1064562423701570","DOIUrl":null,"url":null,"abstract":"<p>We propose to study neural networks’ loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks’ loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks’ loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 2 supplement","pages":"S333 - S347"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barcodes as Summary of Loss Function Topology\",\"authors\":\"S. A. Barannikov, A. A. Korotin, D. A. Oganesyan, D. I. Emtsev, E. V. Burnaev\",\"doi\":\"10.1134/S1064562423701570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose to study neural networks’ loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks’ loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks’ loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 2 supplement\",\"pages\":\"S333 - S347\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701570\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701570","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We propose to study neural networks’ loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks’ loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks’ loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.