条形码作为损失函数拓扑结构的总结

IF 0.5 4区 数学 Q3 MATHEMATICS
S. A. Barannikov, A. A. Korotin, D. A. Oganesyan, D. I. Emtsev, E. V. Burnaev
{"title":"条形码作为损失函数拓扑结构的总结","authors":"S. A. Barannikov,&nbsp;A. A. Korotin,&nbsp;D. A. Oganesyan,&nbsp;D. I. Emtsev,&nbsp;E. V. Burnaev","doi":"10.1134/S1064562423701570","DOIUrl":null,"url":null,"abstract":"<p>We propose to study neural networks’ loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks’ loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks’ loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 2 supplement","pages":"S333 - S347"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barcodes as Summary of Loss Function Topology\",\"authors\":\"S. A. Barannikov,&nbsp;A. A. Korotin,&nbsp;D. A. Oganesyan,&nbsp;D. I. Emtsev,&nbsp;E. V. Burnaev\",\"doi\":\"10.1134/S1064562423701570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose to study neural networks’ loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks’ loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks’ loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 2 supplement\",\"pages\":\"S333 - S347\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701570\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701570","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们建议用拓扑数据分析方法研究神经网络的损失面。我们建议应用莫尔斯复合条形码来探索损失面的拓扑结构。本文介绍了计算损失函数局部极小值条形码的算法。我们对基准函数和小型神经网络损失面的局部极小值条形码进行了计算实验。我们的实验证实了我们对神经网络损失面的两个主要观察结果。首先,局部极小值条形码位于神经网络损失函数值范围的较低小部分。其次,神经网络深度和宽度的增加会降低局部最小值的条形码。这对神经网络的学习及其泛化特性自然会产生一些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Barcodes as Summary of Loss Function Topology

Barcodes as Summary of Loss Function Topology

Barcodes as Summary of Loss Function Topology

We propose to study neural networks’ loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function’s barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks’ loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks’ loss function. Secondly, increase of the neural network’s depth and width lowers the barcodes of local minima. This has some natural implications for the neural network’s learning and for its generalization properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信