Teichmüller 的模态和狄利克特积分的变化

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020058
V. N. Dubinin
{"title":"Teichmüller 的模态和狄利克特积分的变化","authors":"V. N. Dubinin","doi":"10.1134/s0037446624020058","DOIUrl":null,"url":null,"abstract":"<p>We show that\nchanging the level curve of a harmonic function\nwith the classical Hadamard variation with a small parameter\nentails a change in the Dirichlet integral of the function\nwhich is quadratic in the parameter.\nAs a corollary,\nwe supplement the well-known theorem of Teichmüller\nabout the sum of moduli of doubly connected domains\ninto which an annulus is subdivided\nby a continuum that differs little from a concentric circle.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teichmüller’s Modulsatz and the Variation of the Dirichlet Integral\",\"authors\":\"V. N. Dubinin\",\"doi\":\"10.1134/s0037446624020058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that\\nchanging the level curve of a harmonic function\\nwith the classical Hadamard variation with a small parameter\\nentails a change in the Dirichlet integral of the function\\nwhich is quadratic in the parameter.\\nAs a corollary,\\nwe supplement the well-known theorem of Teichmüller\\nabout the sum of moduli of doubly connected domains\\ninto which an annulus is subdivided\\nby a continuum that differs little from a concentric circle.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,用经典的哈达玛变分法改变谐函数的小参数水平曲线,会导致函数的狄利克特积分发生变化,而函数的狄利克特积分是参数的二次方。作为推论,我们补充了泰赫穆勒关于双连域模量之和的著名定理,在双连域中,环面被一个与同心圆差别不大的连续体细分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Teichmüller’s Modulsatz and the Variation of the Dirichlet Integral

We show that changing the level curve of a harmonic function with the classical Hadamard variation with a small parameter entails a change in the Dirichlet integral of the function which is quadratic in the parameter. As a corollary, we supplement the well-known theorem of Teichmüller about the sum of moduli of doubly connected domains into which an annulus is subdivided by a continuum that differs little from a concentric circle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信