{"title":"Teichmüller 的模态和狄利克特积分的变化","authors":"V. N. Dubinin","doi":"10.1134/s0037446624020058","DOIUrl":null,"url":null,"abstract":"<p>We show that\nchanging the level curve of a harmonic function\nwith the classical Hadamard variation with a small parameter\nentails a change in the Dirichlet integral of the function\nwhich is quadratic in the parameter.\nAs a corollary,\nwe supplement the well-known theorem of Teichmüller\nabout the sum of moduli of doubly connected domains\ninto which an annulus is subdivided\nby a continuum that differs little from a concentric circle.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teichmüller’s Modulsatz and the Variation of the Dirichlet Integral\",\"authors\":\"V. N. Dubinin\",\"doi\":\"10.1134/s0037446624020058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that\\nchanging the level curve of a harmonic function\\nwith the classical Hadamard variation with a small parameter\\nentails a change in the Dirichlet integral of the function\\nwhich is quadratic in the parameter.\\nAs a corollary,\\nwe supplement the well-known theorem of Teichmüller\\nabout the sum of moduli of doubly connected domains\\ninto which an annulus is subdivided\\nby a continuum that differs little from a concentric circle.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Teichmüller’s Modulsatz and the Variation of the Dirichlet Integral
We show that
changing the level curve of a harmonic function
with the classical Hadamard variation with a small parameter
entails a change in the Dirichlet integral of the function
which is quadratic in the parameter.
As a corollary,
we supplement the well-known theorem of Teichmüller
about the sum of moduli of doubly connected domains
into which an annulus is subdivided
by a continuum that differs little from a concentric circle.