İ. Peşkircioğlu Gökçe, M. Üçüncü, E. Güran Schmidt
{"title":"用于航空电子设备全双工交换式以太网的 OMNeT++ 仿真框架","authors":"İ. Peşkircioğlu Gökçe, M. Üçüncü, E. Güran Schmidt","doi":"10.2514/1.i011351","DOIUrl":null,"url":null,"abstract":"<p>Avionics Full-Duplex Switched Ethernet (AFDX) is a popular network technology for integrated modular avionics (IMA). When designing an AFDX network, it is important to fulfill the real-time communication requirements of avionic systems. To this end, simulation tools offer a low-cost solution for the performance evaluation of a given AFDX network and message set configuration at the design stage. In this paper, we develop an improved AFDX model for the widely used OMNeT++ (extensible, modular, component-based C++ simulation library and framework) network simulator. Our model exhibits high fidelity to the standard, adds detailed parameter configuration and data logging capabilities, and is compatible with the most recent OMNeT++ version. Our model is accepted by the OMNeT++ community and published as the current AFDX simulation model. Moreover, we propose a complete AFDX simulation framework by augmenting our improved OMNeT++ models with a new network configuration and analysis software tool that we call ANCAT. ANCAT enables users who lack familiarity with the OMNeT++ interface and specific file formats to provide simulation parameters in generic file formats such as.xlsx. Subsequently, ANCAT runs the simulation and generates reports for the results. We first systematically verify the correctness of our AFDX simulation framework by custom-designed experiments. Then, we investigate the practicability of our proposed framework with the performance analysis of a realistic AFDX network topology and message set. In particular, we demonstrate that our proposed framework can be efficiently used to explore the real-time capabilities and relevant features of AFDX networks, as well as provide basic guidelines for network configuration.</p>","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"273 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OMNeT++ Simulation Framework for Avionics Full-Duplex Switched Ethernet\",\"authors\":\"İ. Peşkircioğlu Gökçe, M. Üçüncü, E. Güran Schmidt\",\"doi\":\"10.2514/1.i011351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Avionics Full-Duplex Switched Ethernet (AFDX) is a popular network technology for integrated modular avionics (IMA). When designing an AFDX network, it is important to fulfill the real-time communication requirements of avionic systems. To this end, simulation tools offer a low-cost solution for the performance evaluation of a given AFDX network and message set configuration at the design stage. In this paper, we develop an improved AFDX model for the widely used OMNeT++ (extensible, modular, component-based C++ simulation library and framework) network simulator. Our model exhibits high fidelity to the standard, adds detailed parameter configuration and data logging capabilities, and is compatible with the most recent OMNeT++ version. Our model is accepted by the OMNeT++ community and published as the current AFDX simulation model. Moreover, we propose a complete AFDX simulation framework by augmenting our improved OMNeT++ models with a new network configuration and analysis software tool that we call ANCAT. ANCAT enables users who lack familiarity with the OMNeT++ interface and specific file formats to provide simulation parameters in generic file formats such as.xlsx. Subsequently, ANCAT runs the simulation and generates reports for the results. We first systematically verify the correctness of our AFDX simulation framework by custom-designed experiments. Then, we investigate the practicability of our proposed framework with the performance analysis of a realistic AFDX network topology and message set. In particular, we demonstrate that our proposed framework can be efficiently used to explore the real-time capabilities and relevant features of AFDX networks, as well as provide basic guidelines for network configuration.</p>\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"273 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011351\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011351","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
OMNeT++ Simulation Framework for Avionics Full-Duplex Switched Ethernet
Avionics Full-Duplex Switched Ethernet (AFDX) is a popular network technology for integrated modular avionics (IMA). When designing an AFDX network, it is important to fulfill the real-time communication requirements of avionic systems. To this end, simulation tools offer a low-cost solution for the performance evaluation of a given AFDX network and message set configuration at the design stage. In this paper, we develop an improved AFDX model for the widely used OMNeT++ (extensible, modular, component-based C++ simulation library and framework) network simulator. Our model exhibits high fidelity to the standard, adds detailed parameter configuration and data logging capabilities, and is compatible with the most recent OMNeT++ version. Our model is accepted by the OMNeT++ community and published as the current AFDX simulation model. Moreover, we propose a complete AFDX simulation framework by augmenting our improved OMNeT++ models with a new network configuration and analysis software tool that we call ANCAT. ANCAT enables users who lack familiarity with the OMNeT++ interface and specific file formats to provide simulation parameters in generic file formats such as.xlsx. Subsequently, ANCAT runs the simulation and generates reports for the results. We first systematically verify the correctness of our AFDX simulation framework by custom-designed experiments. Then, we investigate the practicability of our proposed framework with the performance analysis of a realistic AFDX network topology and message set. In particular, we demonstrate that our proposed framework can be efficiently used to explore the real-time capabilities and relevant features of AFDX networks, as well as provide basic guidelines for network configuration.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.