广义斯托克韦尔变换球面均值算子及其应用

Pub Date : 2024-03-25 DOI:10.1515/gmj-2024-2014
Saifallah Ghobber, Hatem Mejjaoli
{"title":"广义斯托克韦尔变换球面均值算子及其应用","authors":"Saifallah Ghobber, Hatem Mejjaoli","doi":"10.1515/gmj-2024-2014","DOIUrl":null,"url":null,"abstract":"The spherical mean operator has been widely studied and has seen remarkable development in many areas of harmonic analysis. In this paper, we consider the Stockwell transform related to the spherical mean operator. Since the study of time-frequency analysis is both theoretically interesting and practically useful, we will study several problems for the generalized Stockwell transform. Firstly, we explore the Shapiro uncertainty principle for this transformation. Next, we will study the boundedness and then the compactness of localization operators related to the generalized Stockwell transform, and finally we will introduce and study its scalogram.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Stockwell transforms: Spherical mean operators and applications\",\"authors\":\"Saifallah Ghobber, Hatem Mejjaoli\",\"doi\":\"10.1515/gmj-2024-2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spherical mean operator has been widely studied and has seen remarkable development in many areas of harmonic analysis. In this paper, we consider the Stockwell transform related to the spherical mean operator. Since the study of time-frequency analysis is both theoretically interesting and practically useful, we will study several problems for the generalized Stockwell transform. Firstly, we explore the Shapiro uncertainty principle for this transformation. Next, we will study the boundedness and then the compactness of localization operators related to the generalized Stockwell transform, and finally we will introduce and study its scalogram.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

球均值算子已被广泛研究,并在谐波分析的许多领域得到了显著发展。在本文中,我们将研究与球面均值算子相关的斯托克韦尔变换。由于时频分析的研究既有理论意义又有实用价值,我们将研究广义斯托克韦尔变换的几个问题。首先,我们将探讨该变换的沙皮罗不确定性原理。接着,我们将研究与广义斯托克韦尔变换相关的局部化算子的有界性和紧凑性,最后我们将介绍并研究其示意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized Stockwell transforms: Spherical mean operators and applications
The spherical mean operator has been widely studied and has seen remarkable development in many areas of harmonic analysis. In this paper, we consider the Stockwell transform related to the spherical mean operator. Since the study of time-frequency analysis is both theoretically interesting and practically useful, we will study several problems for the generalized Stockwell transform. Firstly, we explore the Shapiro uncertainty principle for this transformation. Next, we will study the boundedness and then the compactness of localization operators related to the generalized Stockwell transform, and finally we will introduce and study its scalogram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信