{"title":"广义斯托克韦尔变换球面均值算子及其应用","authors":"Saifallah Ghobber, Hatem Mejjaoli","doi":"10.1515/gmj-2024-2014","DOIUrl":null,"url":null,"abstract":"The spherical mean operator has been widely studied and has seen remarkable development in many areas of harmonic analysis. In this paper, we consider the Stockwell transform related to the spherical mean operator. Since the study of time-frequency analysis is both theoretically interesting and practically useful, we will study several problems for the generalized Stockwell transform. Firstly, we explore the Shapiro uncertainty principle for this transformation. Next, we will study the boundedness and then the compactness of localization operators related to the generalized Stockwell transform, and finally we will introduce and study its scalogram.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Stockwell transforms: Spherical mean operators and applications\",\"authors\":\"Saifallah Ghobber, Hatem Mejjaoli\",\"doi\":\"10.1515/gmj-2024-2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spherical mean operator has been widely studied and has seen remarkable development in many areas of harmonic analysis. In this paper, we consider the Stockwell transform related to the spherical mean operator. Since the study of time-frequency analysis is both theoretically interesting and practically useful, we will study several problems for the generalized Stockwell transform. Firstly, we explore the Shapiro uncertainty principle for this transformation. Next, we will study the boundedness and then the compactness of localization operators related to the generalized Stockwell transform, and finally we will introduce and study its scalogram.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized Stockwell transforms: Spherical mean operators and applications
The spherical mean operator has been widely studied and has seen remarkable development in many areas of harmonic analysis. In this paper, we consider the Stockwell transform related to the spherical mean operator. Since the study of time-frequency analysis is both theoretically interesting and practically useful, we will study several problems for the generalized Stockwell transform. Firstly, we explore the Shapiro uncertainty principle for this transformation. Next, we will study the boundedness and then the compactness of localization operators related to the generalized Stockwell transform, and finally we will introduce and study its scalogram.