摩尔-彭罗斯逆和群逆的混合逆序定律的构造和特征

Pub Date : 2024-03-25 DOI:10.1515/gmj-2024-2016
Yongge Tian
{"title":"摩尔-彭罗斯逆和群逆的混合逆序定律的构造和特征","authors":"Yongge Tian","doi":"10.1515/gmj-2024-2016","DOIUrl":null,"url":null,"abstract":"This paper is concerned with constructions and characterizations of matrix equalities that involve mixed products of Moore–Penrose inverses and group inverses of two matrices. We first construct a mixed reverse-order law <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0486.png\" /> <jats:tex-math>{(AB)^{{\\dagger}}=B^{\\ast}(A^{\\ast}ABB^{\\ast})^{\\#}A^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and show that this matrix equality always holds through the use of a special matrix rank equality and some matrix range operations, where <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> are two matrices of appropriate sizes, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0509.png\" /> <jats:tex-math>{(\\,\\cdot\\,)^{\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0510.png\" /> <jats:tex-math>{(\\,\\cdot\\,)^{{\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0508.png\" /> <jats:tex-math>{(\\,\\cdot\\,)^{\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> mean the conjugate transpose, the Moore–Penrose inverse, and the group inverse of a matrix, respectively. We then give a diverse range of variation forms of this equality, and derive necessary and sufficient conditions for them to hold. Especially, we show an interesting fact that the two reverse-order laws <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>†</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>†</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0487.png\" /> <jats:tex-math>{(AB)^{{\\dagger}}=B^{{\\dagger}}A^{{\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mi>A</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">#</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2016_eq_0501.png\" /> <jats:tex-math>{(A^{\\ast}ABB^{\\ast})^{\\#}=(BB^{\\ast})^{\\#}(A^{\\ast}A)^{\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are equivalent.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructions and characterizations of mixed reverse-order laws for the Moore–Penrose inverse and group inverse\",\"authors\":\"Yongge Tian\",\"doi\":\"10.1515/gmj-2024-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with constructions and characterizations of matrix equalities that involve mixed products of Moore–Penrose inverses and group inverses of two matrices. We first construct a mixed reverse-order law <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0486.png\\\" /> <jats:tex-math>{(AB)^{{\\\\dagger}}=B^{\\\\ast}(A^{\\\\ast}ABB^{\\\\ast})^{\\\\#}A^{\\\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and show that this matrix equality always holds through the use of a special matrix rank equality and some matrix range operations, where <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> are two matrices of appropriate sizes, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>∗</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0509.png\\\" /> <jats:tex-math>{(\\\\,\\\\cdot\\\\,)^{\\\\ast}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0510.png\\\" /> <jats:tex-math>{(\\\\,\\\\cdot\\\\,)^{{\\\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0508.png\\\" /> <jats:tex-math>{(\\\\,\\\\cdot\\\\,)^{\\\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> mean the conjugate transpose, the Moore–Penrose inverse, and the group inverse of a matrix, respectively. We then give a diverse range of variation forms of this equality, and derive necessary and sufficient conditions for them to hold. Especially, we show an interesting fact that the two reverse-order laws <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>†</m:mo> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mo>†</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mi>A</m:mi> <m:mo>†</m:mo> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0487.png\\\" /> <jats:tex-math>{(AB)^{{\\\\dagger}}=B^{{\\\\dagger}}A^{{\\\\dagger}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mi>A</m:mi> <m:mo>⁢</m:mo> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>B</m:mi> <m:mo>∗</m:mo> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mo>∗</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mi>A</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">#</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2016_eq_0501.png\\\" /> <jats:tex-math>{(A^{\\\\ast}ABB^{\\\\ast})^{\\\\#}=(BB^{\\\\ast})^{\\\\#}(A^{\\\\ast}A)^{\\\\#}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are equivalent.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注涉及两个矩阵的摩尔-彭罗斯倒数和群倒数的混合乘积的矩阵等式的构造和特征。我们首先构建了一个混合逆序律 ( A B ) † = B ∗ ( A ∗ A B B ∗ ) # A ∗ {(AB)^{{\dagger}}=B^{ast}(A^{/ast}ABB^{/ast})^{\#}A^{/ast}} ,并通过证明这个矩阵相等总是成立的,来说明这个矩阵相等是正确的。 通过使用特殊的矩阵秩相等和一些矩阵范围运算,证明这个矩阵相等总是成立的,其中 A 和 B 是两个适当大小的矩阵,( ⋅ ) ∗ {(\,\cdot\,)^{\ast}} ,( ⋅ ) † {(\,\cdot\,)^{\ast}} 。 , ( ⋅ ) † {(\\cdot\,)^{{\dagger}} 和 ( ⋅ ) # {(\\cdot\,)^{\#}} 分别指矩阵的共轭转置、摩尔-彭罗斯逆和群逆。然后,我们给出了这一等式的各种变化形式,并推导出它们成立的必要条件和充分条件。特别是特别是,我们展示了一个有趣的事实,即两个反序规律( A B ) † = B † A † {(AB)^{{\dagger}}=B^{{dagger\}}A^{{\dagger}}} 和 ( A ∗ A B B∗ ) # = ( B B ∗ ) # ( A A ) # {(A^{\ast}ABB^{\ast})^{#}=(BB^{\ast})^{#}(A^{\ast}A)^{\#}} 是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Constructions and characterizations of mixed reverse-order laws for the Moore–Penrose inverse and group inverse
This paper is concerned with constructions and characterizations of matrix equalities that involve mixed products of Moore–Penrose inverses and group inverses of two matrices. We first construct a mixed reverse-order law ( A B ) = B ( A A B B ) # A {(AB)^{{\dagger}}=B^{\ast}(A^{\ast}ABB^{\ast})^{\#}A^{\ast}} , and show that this matrix equality always holds through the use of a special matrix rank equality and some matrix range operations, where A and B are two matrices of appropriate sizes, ( ) {(\,\cdot\,)^{\ast}} , ( ) {(\,\cdot\,)^{{\dagger}}} and ( ) # {(\,\cdot\,)^{\#}} mean the conjugate transpose, the Moore–Penrose inverse, and the group inverse of a matrix, respectively. We then give a diverse range of variation forms of this equality, and derive necessary and sufficient conditions for them to hold. Especially, we show an interesting fact that the two reverse-order laws ( A B ) = B A {(AB)^{{\dagger}}=B^{{\dagger}}A^{{\dagger}}} and ( A A B B ) # = ( B B ) # ( A A ) # {(A^{\ast}ABB^{\ast})^{\#}=(BB^{\ast})^{\#}(A^{\ast}A)^{\#}} are equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信