以经济状态为条件的信用评级迁移马尔可夫方法

Michael Kalkbrener, Natalie Packham
{"title":"以经济状态为条件的信用评级迁移马尔可夫方法","authors":"Michael Kalkbrener, Natalie Packham","doi":"arxiv-2403.14868","DOIUrl":null,"url":null,"abstract":"We develop a model for credit rating migration that accounts for the impact\nof economic state fluctuations on default probabilities. The joint process for\nthe economic state and the rating is modelled as a time-homogeneous Markov\nchain. While the rating process itself possesses the Markov property only under\nrestrictive conditions, methods from Markov theory can be used to derive the\nrating process' asymptotic behaviour. We use the mathematical framework to\nformalise and analyse different rating philosophies, such as point-in-time\n(PIT) and through-the-cycle (TTC) ratings. Furthermore, we introduce stochastic\norders on the bivariate process' transition matrix to establish a consistent\nnotion of \"better\" and \"worse\" ratings. Finally, the construction of PIT and\nTTC ratings is illustrated on a Merton-type firm-value process.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Markov approach to credit rating migration conditional on economic states\",\"authors\":\"Michael Kalkbrener, Natalie Packham\",\"doi\":\"arxiv-2403.14868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a model for credit rating migration that accounts for the impact\\nof economic state fluctuations on default probabilities. The joint process for\\nthe economic state and the rating is modelled as a time-homogeneous Markov\\nchain. While the rating process itself possesses the Markov property only under\\nrestrictive conditions, methods from Markov theory can be used to derive the\\nrating process' asymptotic behaviour. We use the mathematical framework to\\nformalise and analyse different rating philosophies, such as point-in-time\\n(PIT) and through-the-cycle (TTC) ratings. Furthermore, we introduce stochastic\\norders on the bivariate process' transition matrix to establish a consistent\\nnotion of \\\"better\\\" and \\\"worse\\\" ratings. Finally, the construction of PIT and\\nTTC ratings is illustrated on a Merton-type firm-value process.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.14868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.14868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个信用评级迁移模型,该模型考虑了经济状态波动对违约概率的影响。经济状态和评级的联合过程被模拟为时间均质马尔可夫链。虽然评级过程本身仅在限制条件下具有马尔可夫特性,但马尔可夫理论的方法可用于推导评级过程的渐近行为。我们利用数学框架对不同的评级理念进行了形式化和分析,如时间点评级(PIT)和周期评级(TTC)。此外,我们还在二元过程的转换矩阵上引入了随机序列,以建立 "较好 "和 "较差 "评级的一致性。最后,在默顿型公司价值过程中说明了 PIT 和 TTC 评级的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Markov approach to credit rating migration conditional on economic states
We develop a model for credit rating migration that accounts for the impact of economic state fluctuations on default probabilities. The joint process for the economic state and the rating is modelled as a time-homogeneous Markov chain. While the rating process itself possesses the Markov property only under restrictive conditions, methods from Markov theory can be used to derive the rating process' asymptotic behaviour. We use the mathematical framework to formalise and analyse different rating philosophies, such as point-in-time (PIT) and through-the-cycle (TTC) ratings. Furthermore, we introduce stochastic orders on the bivariate process' transition matrix to establish a consistent notion of "better" and "worse" ratings. Finally, the construction of PIT and TTC ratings is illustrated on a Merton-type firm-value process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信