复合泊松背景下以大暴露渐近为动机的马克估计器

Nils Engler, Filip Lindskog
{"title":"复合泊松背景下以大暴露渐近为动机的马克估计器","authors":"Nils Engler, Filip Lindskog","doi":"10.1017/asb.2024.11","DOIUrl":null,"url":null,"abstract":"The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss models, that is of compound Poisson type, are not consistent with Mack’s distribution-free chain ladder. However, for a sequence of compound Poisson loss models indexed by exposure (e.g., number of contracts), we show that the chain ladder predictor and Mack’s estimator of conditional mean squared error of prediction can be derived by considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with Mack’s estimator without relying on the validity of the model assumptions of the distribution-free chain ladder.","PeriodicalId":501189,"journal":{"name":"ASTIN Bulletin: The Journal of the IAA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mack’s estimator motivated by large exposure asymptotics in a compound poisson setting\",\"authors\":\"Nils Engler, Filip Lindskog\",\"doi\":\"10.1017/asb.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss models, that is of compound Poisson type, are not consistent with Mack’s distribution-free chain ladder. However, for a sequence of compound Poisson loss models indexed by exposure (e.g., number of contracts), we show that the chain ladder predictor and Mack’s estimator of conditional mean squared error of prediction can be derived by considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with Mack’s estimator without relying on the validity of the model assumptions of the distribution-free chain ladder.\",\"PeriodicalId\":501189,\"journal\":{\"name\":\"ASTIN Bulletin: The Journal of the IAA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin: The Journal of the IAA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2024.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin: The Journal of the IAA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Mack 的无分布链梯证明了使用链梯预测器的合理性,并使 Mack 能够推导出链梯预测器的条件均方误差估计值。经典的保险损失模型,即复合泊松类型,与 Mack 的无分布链梯不一致。然而,对于一连串以风险敞口(如合同数量)为指标的复合泊松损失模型,我们证明链梯预测器和 Mack 的预测条件均方误差估计值可以通过考虑大风险敞口渐近线而得出。因此,量化链梯预测的不确定性可以使用 Mack 估计器,而无需依赖无分布链梯模型假设的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mack’s estimator motivated by large exposure asymptotics in a compound poisson setting
The distribution-free chain ladder of Mack justified the use of the chain ladder predictor and enabled Mack to derive an estimator of conditional mean squared error of prediction for the chain ladder predictor. Classical insurance loss models, that is of compound Poisson type, are not consistent with Mack’s distribution-free chain ladder. However, for a sequence of compound Poisson loss models indexed by exposure (e.g., number of contracts), we show that the chain ladder predictor and Mack’s estimator of conditional mean squared error of prediction can be derived by considering large exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be done with Mack’s estimator without relying on the validity of the model assumptions of the distribution-free chain ladder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信