{"title":"基于线性系统理论的简单可扩展粒子群优化结构","authors":"Jian Zhu, Jianhua Liu","doi":"10.1007/s12293-024-00408-4","DOIUrl":null,"url":null,"abstract":"<p>Since it was first presented, particle swarm optimization (PSO) has experienced numerous improvements as a traditional optimization approach. PSO becomes more complex as a result of the majority of improvement strategies, which use learning model replacement or parameter adjustment to enhance PSO’s performance. Based on linear system theory, this study proposes a simple and scalable framework for restructuring particle swarm optimization (RPSO) and provides a new example of the RPSO algorithm framework, Q-RPSO. The RPSO framework adopts a single position updating formula instead of the original position and velocity updating formulas, which are unrelated to the PSO’s velocity and the current position. The experiments were carried out to compare with the standard PSO and six PSO variants based on CEC 2013 benchmark functions. The experimental results demonstrate that, whether in terms of global exploration capability or convergence accuracy, Q-RPSO outperforms all competitor algorithms.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"233 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple and scalable particle swarm optimization structure based on linear system theory\",\"authors\":\"Jian Zhu, Jianhua Liu\",\"doi\":\"10.1007/s12293-024-00408-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since it was first presented, particle swarm optimization (PSO) has experienced numerous improvements as a traditional optimization approach. PSO becomes more complex as a result of the majority of improvement strategies, which use learning model replacement or parameter adjustment to enhance PSO’s performance. Based on linear system theory, this study proposes a simple and scalable framework for restructuring particle swarm optimization (RPSO) and provides a new example of the RPSO algorithm framework, Q-RPSO. The RPSO framework adopts a single position updating formula instead of the original position and velocity updating formulas, which are unrelated to the PSO’s velocity and the current position. The experiments were carried out to compare with the standard PSO and six PSO variants based on CEC 2013 benchmark functions. The experimental results demonstrate that, whether in terms of global exploration capability or convergence accuracy, Q-RPSO outperforms all competitor algorithms.</p>\",\"PeriodicalId\":48780,\"journal\":{\"name\":\"Memetic Computing\",\"volume\":\"233 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memetic Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-024-00408-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00408-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A simple and scalable particle swarm optimization structure based on linear system theory
Since it was first presented, particle swarm optimization (PSO) has experienced numerous improvements as a traditional optimization approach. PSO becomes more complex as a result of the majority of improvement strategies, which use learning model replacement or parameter adjustment to enhance PSO’s performance. Based on linear system theory, this study proposes a simple and scalable framework for restructuring particle swarm optimization (RPSO) and provides a new example of the RPSO algorithm framework, Q-RPSO. The RPSO framework adopts a single position updating formula instead of the original position and velocity updating formulas, which are unrelated to the PSO’s velocity and the current position. The experiments were carried out to compare with the standard PSO and six PSO variants based on CEC 2013 benchmark functions. The experimental results demonstrate that, whether in terms of global exploration capability or convergence accuracy, Q-RPSO outperforms all competitor algorithms.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.