{"title":"汇总折纸序列","authors":"MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD","doi":"10.1017/s0004972724000169","DOIUrl":null,"url":null,"abstract":"The sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline1.png\" /> <jats:tex-math> $a( 1) ,a( 2) ,a( 3) ,\\ldots, $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> labelled A088431 in the <jats:italic>Online Encyclopedia of Integer Sequences</jats:italic>, is defined by: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline2.png\" /> <jats:tex-math> $a( n) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is half of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline3.png\" /> <jats:tex-math> $( n+1) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th component, that is, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline4.png\" /> <jats:tex-math> $( n+2) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th term, of the continued fraction expansion of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*} \\sum_{k=0}^{\\infty }\\frac{1}{2^{2^{k}}}. \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE SUMMED PAPERFOLDING SEQUENCE\",\"authors\":\"MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD\",\"doi\":\"10.1017/s0004972724000169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline1.png\\\" /> <jats:tex-math> $a( 1) ,a( 2) ,a( 3) ,\\\\ldots, $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> labelled A088431 in the <jats:italic>Online Encyclopedia of Integer Sequences</jats:italic>, is defined by: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline2.png\\\" /> <jats:tex-math> $a( n) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is half of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline3.png\\\" /> <jats:tex-math> $( n+1) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th component, that is, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline4.png\\\" /> <jats:tex-math> $( n+2) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th term, of the continued fraction expansion of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*} \\\\sum_{k=0}^{\\\\infty }\\\\frac{1}{2^{2^{k}}}. \\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The sequence $a( 1) ,a( 2) ,a( 3) ,\ldots, $ labelled A088431 in the Online Encyclopedia of Integer Sequences, is defined by: $a( n) $ is half of the $( n+1) $ th component, that is, the $( n+2) $ th term, of the continued fraction expansion of $$ \begin{align*} \sum_{k=0}^{\infty }\frac{1}{2^{2^{k}}}. \end{align*} $$ Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.