{"title":"汇总折纸序列","authors":"MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD","doi":"10.1017/s0004972724000169","DOIUrl":null,"url":null,"abstract":"The sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline1.png\" /> <jats:tex-math> $a( 1) ,a( 2) ,a( 3) ,\\ldots, $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> labelled A088431 in the <jats:italic>Online Encyclopedia of Integer Sequences</jats:italic>, is defined by: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline2.png\" /> <jats:tex-math> $a( n) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is half of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline3.png\" /> <jats:tex-math> $( n+1) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th component, that is, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline4.png\" /> <jats:tex-math> $( n+2) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th term, of the continued fraction expansion of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*} \\sum_{k=0}^{\\infty }\\frac{1}{2^{2^{k}}}. \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE SUMMED PAPERFOLDING SEQUENCE\",\"authors\":\"MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD\",\"doi\":\"10.1017/s0004972724000169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline1.png\\\" /> <jats:tex-math> $a( 1) ,a( 2) ,a( 3) ,\\\\ldots, $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> labelled A088431 in the <jats:italic>Online Encyclopedia of Integer Sequences</jats:italic>, is defined by: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline2.png\\\" /> <jats:tex-math> $a( n) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is half of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline3.png\\\" /> <jats:tex-math> $( n+1) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th component, that is, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_inline4.png\\\" /> <jats:tex-math> $( n+2) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th term, of the continued fraction expansion of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000169_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*} \\\\sum_{k=0}^{\\\\infty }\\\\frac{1}{2^{2^{k}}}. \\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000169\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000169","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The sequence $a( 1) ,a( 2) ,a( 3) ,\ldots, $ labelled A088431 in the Online Encyclopedia of Integer Sequences, is defined by: $a( n) $ is half of the $( n+1) $ th component, that is, the $( n+2) $ th term, of the continued fraction expansion of $$ \begin{align*} \sum_{k=0}^{\infty }\frac{1}{2^{2^{k}}}. \end{align*} $$ Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society