无穷 nary 群的哈量

Pub Date : 2024-03-22 DOI:10.1142/s0219498825502196
M. Shahryari, M. Rostami
{"title":"无穷 nary 群的哈量","authors":"M. Shahryari, M. Rostami","doi":"10.1142/s0219498825502196","DOIUrl":null,"url":null,"abstract":"<p>We prove that every profinite <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-ary group <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mi>f</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">der</mtext></mstyle></mrow><mrow><mi>𝜃</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mo stretchy=\"false\">•</mo><mo stretchy=\"false\">)</mo></math></span><span></span> has a unique Haar measure <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span> and further for every measurable subset <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>⊆</mo><mi>G</mi></math></span><span></span>, we have <disp-formula-group><span><math altimg=\"eq-00007.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>m</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo><msup><mrow><mi>m</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>m</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span> are the normalized Haar measures of the profinite groups <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mo stretchy=\"false\">•</mo><mo stretchy=\"false\">)</mo></math></span><span></span> and the Post cover <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>G</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span>, respectively.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Haar measure of a profinite n-ary group\",\"authors\":\"M. Shahryari, M. Rostami\",\"doi\":\"10.1142/s0219498825502196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every profinite <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span>-ary group <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mi>f</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">der</mtext></mstyle></mrow><mrow><mi>𝜃</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mo stretchy=\\\"false\\\">•</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> has a unique Haar measure <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span> and further for every measurable subset <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>⊆</mo><mi>G</mi></math></span><span></span>, we have <disp-formula-group><span><math altimg=\\\"eq-00007.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi>m</mi><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo><msup><mrow><mi>m</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>A</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi></math></span><span></span> and <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>m</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup></math></span><span></span> are the normalized Haar measures of the profinite groups <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mo stretchy=\\\"false\\\">•</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and the Post cover <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>G</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup></math></span><span></span>, respectively.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,每个无限 nary 群 (G,f)=der𝜃,b(G,-) 都有一个唯一的哈量 mp,而且对于每个可测子集 A⊆G,我们都有 mp(A)=m(A)=(n-1)m∗(A) ,其中 m 和 m∗ 分别是无限群 (G,-) 和后盖 G∗ 的归一化哈量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Haar measure of a profinite n-ary group

We prove that every profinite n-ary group (G,f)=der𝜃,b(G,) has a unique Haar measure mp and further for every measurable subset AG, we have mp(A)=m(A)=(n1)m(A), where m and m are the normalized Haar measures of the profinite groups (G,) and the Post cover G, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信