Ali I Ansari, Nazir A Sheikh, Navin Kumar, Jyotendra Nath
{"title":"基于丝纤维素和葫芦巴的三维打印生物复合材料支架","authors":"Ali I Ansari, Nazir A Sheikh, Navin Kumar, Jyotendra Nath","doi":"10.1177/14644207241241156","DOIUrl":null,"url":null,"abstract":"When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach doesn't seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. Three-dimensional bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for three-dimensional bioprinting, four different materials were combined such as silk fibroin, bone particles (B), synthetic biopolymer poly (ε-caprolactone), and Fenugreek (F). These biomaterials were mixed together in certain proportion to develop a silk fibroin + bovine bone + polycaprolactone + fenugreek powder composites biomaterial which was later three-dimensional bioprinted to fabricated composite bio-scaffold. The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds’ capacity to generate hydroxyapatite in vitro. The combined findings show that the three-dimensional printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional printed silk fibroin and fenugreek based bio-composites scaffolds\",\"authors\":\"Ali I Ansari, Nazir A Sheikh, Navin Kumar, Jyotendra Nath\",\"doi\":\"10.1177/14644207241241156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach doesn't seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. Three-dimensional bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for three-dimensional bioprinting, four different materials were combined such as silk fibroin, bone particles (B), synthetic biopolymer poly (ε-caprolactone), and Fenugreek (F). These biomaterials were mixed together in certain proportion to develop a silk fibroin + bovine bone + polycaprolactone + fenugreek powder composites biomaterial which was later three-dimensional bioprinted to fabricated composite bio-scaffold. The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds’ capacity to generate hydroxyapatite in vitro. The combined findings show that the three-dimensional printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.\",\"PeriodicalId\":20630,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241241156\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241241156","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-dimensional printed silk fibroin and fenugreek based bio-composites scaffolds
When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach doesn't seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. Three-dimensional bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for three-dimensional bioprinting, four different materials were combined such as silk fibroin, bone particles (B), synthetic biopolymer poly (ε-caprolactone), and Fenugreek (F). These biomaterials were mixed together in certain proportion to develop a silk fibroin + bovine bone + polycaprolactone + fenugreek powder composites biomaterial which was later three-dimensional bioprinted to fabricated composite bio-scaffold. The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds’ capacity to generate hydroxyapatite in vitro. The combined findings show that the three-dimensional printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.
期刊介绍:
The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers.
"The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK
This journal is a member of the Committee on Publication Ethics (COPE).