小周长图形的周期隔离

IF 0.6 4区 数学 Q3 MATHEMATICS
Gang Zhang, Baoyindureng Wu
{"title":"小周长图形的周期隔离","authors":"Gang Zhang, Baoyindureng Wu","doi":"10.1007/s00373-024-02768-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a graph. A subset <span>\\(D \\subseteq V(G)\\)</span> is a decycling set of <i>G</i> if <span>\\(G-D\\)</span> contains no cycle. A subset <span>\\(D \\subseteq V(G)\\)</span> is a cycle isolating set of <i>G</i> if <span>\\(G-N[D]\\)</span> contains no cycle. The decycling number and cycle isolation number of <i>G</i>, denoted by <span>\\(\\phi (G)\\)</span> and <span>\\(\\iota _c(G)\\)</span>, are the minimum cardinalities of a decycling set and a cycle isolating set of <i>G</i>, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if <i>G</i> is a planar graph of size <i>m</i> and girth at least <i>g</i>, then <span>\\(\\phi (G) \\le \\frac{m}{g}\\)</span>. So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if <i>G</i> is a connected graph of size <i>m</i> and girth at least <i>g</i> that is different from <span>\\(C_g\\)</span>, then <span>\\(\\iota _c(G) \\le \\frac{m+1}{g+2}\\)</span>, and they presented a proof for the initial case <span>\\(g=3\\)</span>. In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycle Isolation of Graphs with Small Girth\",\"authors\":\"Gang Zhang, Baoyindureng Wu\",\"doi\":\"10.1007/s00373-024-02768-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a graph. A subset <span>\\\\(D \\\\subseteq V(G)\\\\)</span> is a decycling set of <i>G</i> if <span>\\\\(G-D\\\\)</span> contains no cycle. A subset <span>\\\\(D \\\\subseteq V(G)\\\\)</span> is a cycle isolating set of <i>G</i> if <span>\\\\(G-N[D]\\\\)</span> contains no cycle. The decycling number and cycle isolation number of <i>G</i>, denoted by <span>\\\\(\\\\phi (G)\\\\)</span> and <span>\\\\(\\\\iota _c(G)\\\\)</span>, are the minimum cardinalities of a decycling set and a cycle isolating set of <i>G</i>, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if <i>G</i> is a planar graph of size <i>m</i> and girth at least <i>g</i>, then <span>\\\\(\\\\phi (G) \\\\le \\\\frac{m}{g}\\\\)</span>. So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if <i>G</i> is a connected graph of size <i>m</i> and girth at least <i>g</i> that is different from <span>\\\\(C_g\\\\)</span>, then <span>\\\\(\\\\iota _c(G) \\\\le \\\\frac{m+1}{g+2}\\\\)</span>, and they presented a proof for the initial case <span>\\\\(g=3\\\\)</span>. In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02768-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02768-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个图。如果 \(G-D\) 不包含循环,那么子集 \(D\subseteq V(G)\) 就是 G 的去循环集。如果 \(G-N[D]\) 不包含循环,那么子集 \(D\subseteq V(G)\) 就是 G 的循环隔离集。G 的去周期数和周期隔离数分别用 \(\phi (G)\) 和 \(\iota _c(G)\)表示,它们是 G 的去周期集和周期隔离集的最小心数。Dross、Montassier 和 Pinlou(Discrete Appl Math 214:99-107, 2016)猜想,如果 G 是大小为 m、周长至少为 g 的平面图,那么 \(\phi (G) \le \frac{m}{g\}).迄今为止,这一猜想仍未解决。最近,作者们提出了一个类似的猜想,即如果 G 是一个大小为 m、周长至少为 g 的连通图,并且不同于 \(C_g\),那么 \(\iota _c(G))le \frac{m+1}{g+2}(),并且他们提出了对初始情形 \(g=3)的证明。本文将进一步证明,对于周长至少为 4、5 和 6 的情况,这一猜想是真的。本文对上述结果的极值图进行了描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cycle Isolation of Graphs with Small Girth

Cycle Isolation of Graphs with Small Girth

Let G be a graph. A subset \(D \subseteq V(G)\) is a decycling set of G if \(G-D\) contains no cycle. A subset \(D \subseteq V(G)\) is a cycle isolating set of G if \(G-N[D]\) contains no cycle. The decycling number and cycle isolation number of G, denoted by \(\phi (G)\) and \(\iota _c(G)\), are the minimum cardinalities of a decycling set and a cycle isolating set of G, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if G is a planar graph of size m and girth at least g, then \(\phi (G) \le \frac{m}{g}\). So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if G is a connected graph of size m and girth at least g that is different from \(C_g\), then \(\iota _c(G) \le \frac{m+1}{g+2}\), and they presented a proof for the initial case \(g=3\). In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信