穴状关节:棘皮动物的一种新型关节

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Helen M. Benson, Richard L. Turner
{"title":"穴状关节:棘皮动物的一种新型关节","authors":"Helen M. Benson,&nbsp;Richard L. Turner","doi":"10.1111/ivb.12422","DOIUrl":null,"url":null,"abstract":"<p>Echinoderm skeletons are composed of calcium carbonate ossicles that join in a variety of ways to form flexible or, more rarely, fixed joints. Ossicle “fusion” in echinoderms has been widely reported in the literature to form various types of fixed joint, but fusion in the sense of chemical union (ankylosis) of the calcitic ossicles has rarely been demonstrated. The arm skeleton of ophiuroids is primarily composed of a series of vertebral ossicles; each vertebra is a compound ossicle that consists of paired ambulacral ossicles united by a fixed joint, often reported to be fused. Development of vertebral ossicles in the amphiurid brittlestar <i>Ophiophragmus filograneus</i> from the arm tip to the oral frame was examined using scanning electron microscopy to follow ontogeny of the vertebra. As an ambulacral ossicle grew, its stereomal trabeculae interdigitated and interlocked by hooking around those of its paired ambulacral, forming the characteristic sinuous suture line central to ophiuroid vertebrae. This three-dimensional interlocking of stereom formed the joint between paired ambulacrals. With further growth of the vertebra, limited fusion of trabeculae of the paired ambulacrals added to the structure of the joint, primarily at the articular surfaces between successive vertebrae. The joint found here with interlocked trabeculae between ambulacral ossicles of <i>O. filograneus</i> appears to be the same type described in the literature in some echinoids and other ophiuroids. This unique type of fixed joint is described here and named the “campylogomphosis” (Greek: <i>campylos</i>, bent; <i>gomphos</i>, bolt). This newly recognized joint might have implications in echinoderm phylogeny, comparative biology, medicine, and materials science.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The campylogomphosis: A new kind of joint in echinoderms\",\"authors\":\"Helen M. Benson,&nbsp;Richard L. Turner\",\"doi\":\"10.1111/ivb.12422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Echinoderm skeletons are composed of calcium carbonate ossicles that join in a variety of ways to form flexible or, more rarely, fixed joints. Ossicle “fusion” in echinoderms has been widely reported in the literature to form various types of fixed joint, but fusion in the sense of chemical union (ankylosis) of the calcitic ossicles has rarely been demonstrated. The arm skeleton of ophiuroids is primarily composed of a series of vertebral ossicles; each vertebra is a compound ossicle that consists of paired ambulacral ossicles united by a fixed joint, often reported to be fused. Development of vertebral ossicles in the amphiurid brittlestar <i>Ophiophragmus filograneus</i> from the arm tip to the oral frame was examined using scanning electron microscopy to follow ontogeny of the vertebra. As an ambulacral ossicle grew, its stereomal trabeculae interdigitated and interlocked by hooking around those of its paired ambulacral, forming the characteristic sinuous suture line central to ophiuroid vertebrae. This three-dimensional interlocking of stereom formed the joint between paired ambulacrals. With further growth of the vertebra, limited fusion of trabeculae of the paired ambulacrals added to the structure of the joint, primarily at the articular surfaces between successive vertebrae. The joint found here with interlocked trabeculae between ambulacral ossicles of <i>O. filograneus</i> appears to be the same type described in the literature in some echinoids and other ophiuroids. This unique type of fixed joint is described here and named the “campylogomphosis” (Greek: <i>campylos</i>, bent; <i>gomphos</i>, bolt). This newly recognized joint might have implications in echinoderm phylogeny, comparative biology, medicine, and materials science.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12422\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

棘皮动物的骨骼由碳酸钙骨小梁组成,这些骨小梁以各种方式连接在一起,形成灵活的关节,或更少见的固定关节。文献中广泛报道了棘皮动物的听小骨 "融合 "形成各种类型的固定关节,但钙质听小骨化学结合(强直)意义上的融合却很少被证实。耳鼻目动物的手臂骨骼主要由一系列椎骨小骨组成;每个椎骨都是一个复合小骨,由成对的椎骨小骨组成,并通过一个固定关节结合在一起,据报道通常是融合在一起的。研究人员利用扫描电子显微镜跟踪脊椎骨的个体发育过程,对两栖类脆口蝠(Ophiophragmus filograneus)从臂端到口腔框架的脊椎骨听小骨发育情况进行了研究。随着伏骨节的生长,其立体骨小梁通过钩住成对伏骨节的立体骨小梁而相互交错,形成了虹彩椎特有的中心蜿蜒缝合线。这种立体交锁形成了成对伏椎之间的关节。随着椎骨的进一步生长,成对伏椎骨小梁的有限融合增加了关节的结构,主要是在连续椎骨之间的关节面。在这里发现的 O. filograneus 伏椎骨小梁之间相互交错的关节,似乎与文献中描述的一些棘皮动物和其他畸形动物的关节类型相同。本文描述了这种独特的固定关节,并将其命名为 "莰栓"(希腊语:campylos,弯曲;gomphos,螺栓)。这种新发现的关节可能会对棘皮动物的系统发育、比较生物学、医学和材料科学产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The campylogomphosis: A new kind of joint in echinoderms

Echinoderm skeletons are composed of calcium carbonate ossicles that join in a variety of ways to form flexible or, more rarely, fixed joints. Ossicle “fusion” in echinoderms has been widely reported in the literature to form various types of fixed joint, but fusion in the sense of chemical union (ankylosis) of the calcitic ossicles has rarely been demonstrated. The arm skeleton of ophiuroids is primarily composed of a series of vertebral ossicles; each vertebra is a compound ossicle that consists of paired ambulacral ossicles united by a fixed joint, often reported to be fused. Development of vertebral ossicles in the amphiurid brittlestar Ophiophragmus filograneus from the arm tip to the oral frame was examined using scanning electron microscopy to follow ontogeny of the vertebra. As an ambulacral ossicle grew, its stereomal trabeculae interdigitated and interlocked by hooking around those of its paired ambulacral, forming the characteristic sinuous suture line central to ophiuroid vertebrae. This three-dimensional interlocking of stereom formed the joint between paired ambulacrals. With further growth of the vertebra, limited fusion of trabeculae of the paired ambulacrals added to the structure of the joint, primarily at the articular surfaces between successive vertebrae. The joint found here with interlocked trabeculae between ambulacral ossicles of O. filograneus appears to be the same type described in the literature in some echinoids and other ophiuroids. This unique type of fixed joint is described here and named the “campylogomphosis” (Greek: campylos, bent; gomphos, bolt). This newly recognized joint might have implications in echinoderm phylogeny, comparative biology, medicine, and materials science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信