论深度神经网络的不透明性

IF 1.7 2区 哲学 0 PHILOSOPHY
Anders Søgaard
{"title":"论深度神经网络的不透明性","authors":"Anders Søgaard","doi":"10.1017/can.2024.1","DOIUrl":null,"url":null,"abstract":"Deep neural networks are said to be opaque, impeding the development of safe and trustworthy artificial intelligence, but where this opacity stems from is less clear. What are the sufficient properties for neural network opacity? Here, I discuss five common properties of deep neural networks and two different kinds of opacity. Which of these properties are sufficient for what type of opacity? I show how each kind of opacity stems from only one of these five properties, and then discuss to what extent the two kinds of opacity can be mitigated by explainability methods.","PeriodicalId":51573,"journal":{"name":"CANADIAN JOURNAL OF PHILOSOPHY","volume":"15 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Opacity of Deep Neural Networks\",\"authors\":\"Anders Søgaard\",\"doi\":\"10.1017/can.2024.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are said to be opaque, impeding the development of safe and trustworthy artificial intelligence, but where this opacity stems from is less clear. What are the sufficient properties for neural network opacity? Here, I discuss five common properties of deep neural networks and two different kinds of opacity. Which of these properties are sufficient for what type of opacity? I show how each kind of opacity stems from only one of these five properties, and then discuss to what extent the two kinds of opacity can be mitigated by explainability methods.\",\"PeriodicalId\":51573,\"journal\":{\"name\":\"CANADIAN JOURNAL OF PHILOSOPHY\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CANADIAN JOURNAL OF PHILOSOPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/can.2024.1\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CANADIAN JOURNAL OF PHILOSOPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/can.2024.1","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

有人说深度神经网络是不透明的,阻碍了安全可信的人工智能的发展,但这种不透明源于何处却不太清楚。神经网络不透明的充分条件是什么?在此,我将讨论深度神经网络的五种常见属性和两种不同的不透明。这些特性中哪些是哪种不透明的充分条件?我将展示每种不透明如何仅源于这五种特性中的一种,然后讨论可解释性方法在多大程度上可以减轻这两种不透明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Opacity of Deep Neural Networks
Deep neural networks are said to be opaque, impeding the development of safe and trustworthy artificial intelligence, but where this opacity stems from is less clear. What are the sufficient properties for neural network opacity? Here, I discuss five common properties of deep neural networks and two different kinds of opacity. Which of these properties are sufficient for what type of opacity? I show how each kind of opacity stems from only one of these five properties, and then discuss to what extent the two kinds of opacity can be mitigated by explainability methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
11.10%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信