论无穷非线性代数方程解的定性特性

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020186
M. H. Avetisyan, Kh. A. Khachatryan
{"title":"论无穷非线性代数方程解的定性特性","authors":"M. H. Avetisyan, Kh. A. Khachatryan","doi":"10.1134/s0037446624020186","DOIUrl":null,"url":null,"abstract":"<p>We study and solve some class of infinite systems of\nalgebraic equations with monotone nonlinearity and Toeplitz-type matrices.\nSuch systems\nfor the specific representations of nonlinearities arise in the discrete problems of\ndynamic theory of clopen <span>\\( p \\)</span>-adic strings for a scalar field of tachyons,\nthe mathematical theory of spatio-temporal spread of an epidemic, radiation transfer theory\nin inhomogeneous media, and the kinetic theory of gases in the framework of the modified Bhatnagar–Gross–Krook\nmodel. The noncompactness of the corresponding operator in the bounded sequence space\nand the criticality property (the presence of trivial nonphysical\nsolutions) is a distinctive feature of these systems.\nFor these reasons, the use of the well-known classical principles of existence\nof fixed points for such equations do not lead to the desired results.\nConstructing some invariant cone segments for the corresponding\nnonlinear operator, we prove the existence and uniqueness of a nontrivial\nnonnegative solution in the bounded sequence space.\nAlso, we study the asymptotic behavior of the solution at <span>\\( \\pm\\infty \\)</span>.\nIn particular, we prove that the limit at <span>\\( \\pm\\infty \\)</span> of a solution is finite.\nAlso, we show that the difference between\nthis limit and a solution belongs to <span>\\( l_{1} \\)</span>.\nBy way of illustration, we provide some special applied examples.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Qualitative Properties of a Solution to a System of Infinite Nonlinear Algebraic Equations\",\"authors\":\"M. H. Avetisyan, Kh. A. Khachatryan\",\"doi\":\"10.1134/s0037446624020186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study and solve some class of infinite systems of\\nalgebraic equations with monotone nonlinearity and Toeplitz-type matrices.\\nSuch systems\\nfor the specific representations of nonlinearities arise in the discrete problems of\\ndynamic theory of clopen <span>\\\\( p \\\\)</span>-adic strings for a scalar field of tachyons,\\nthe mathematical theory of spatio-temporal spread of an epidemic, radiation transfer theory\\nin inhomogeneous media, and the kinetic theory of gases in the framework of the modified Bhatnagar–Gross–Krook\\nmodel. The noncompactness of the corresponding operator in the bounded sequence space\\nand the criticality property (the presence of trivial nonphysical\\nsolutions) is a distinctive feature of these systems.\\nFor these reasons, the use of the well-known classical principles of existence\\nof fixed points for such equations do not lead to the desired results.\\nConstructing some invariant cone segments for the corresponding\\nnonlinear operator, we prove the existence and uniqueness of a nontrivial\\nnonnegative solution in the bounded sequence space.\\nAlso, we study the asymptotic behavior of the solution at <span>\\\\( \\\\pm\\\\infty \\\\)</span>.\\nIn particular, we prove that the limit at <span>\\\\( \\\\pm\\\\infty \\\\)</span> of a solution is finite.\\nAlso, we show that the difference between\\nthis limit and a solution belongs to <span>\\\\( l_{1} \\\\)</span>.\\nBy way of illustration, we provide some special applied examples.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究并求解了一类具有单调非线性和托普利兹型矩阵的无限代数方程系统。这类非线性具体表示的系统出现在高速子标量场的clopen \( p \)-adic弦的离散动力学理论问题、流行病时空传播的数学理论、非均匀介质中的辐射传递理论以及修正巴特纳加-格罗斯-克罗克模型框架下的气体动力学理论中。相应算子在有界序列空间中的非紧凑性和临界特性(存在微不足道的非物理解)是这些系统的一个显著特点。我们为相应的非线性算子构造了一些不变的锥段,证明了有界序列空间中一个非孤立负解的存在性和唯一性。特别是,我们证明了求解在\( \pm\infty \)处的极限是有限的。同时,我们还证明了这个极限与求解之间的差属于\( l_{1} \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Qualitative Properties of a Solution to a System of Infinite Nonlinear Algebraic Equations

We study and solve some class of infinite systems of algebraic equations with monotone nonlinearity and Toeplitz-type matrices. Such systems for the specific representations of nonlinearities arise in the discrete problems of dynamic theory of clopen \( p \)-adic strings for a scalar field of tachyons, the mathematical theory of spatio-temporal spread of an epidemic, radiation transfer theory in inhomogeneous media, and the kinetic theory of gases in the framework of the modified Bhatnagar–Gross–Krook model. The noncompactness of the corresponding operator in the bounded sequence space and the criticality property (the presence of trivial nonphysical solutions) is a distinctive feature of these systems. For these reasons, the use of the well-known classical principles of existence of fixed points for such equations do not lead to the desired results. Constructing some invariant cone segments for the corresponding nonlinear operator, we prove the existence and uniqueness of a nontrivial nonnegative solution in the bounded sequence space. Also, we study the asymptotic behavior of the solution at \( \pm\infty \). In particular, we prove that the limit at \( \pm\infty \) of a solution is finite. Also, we show that the difference between this limit and a solution belongs to \( l_{1} \). By way of illustration, we provide some special applied examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信