子对角线网格路径的瑞尔丹数组和差分方程

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020149
S. Chandragiri
{"title":"子对角线网格路径的瑞尔丹数组和差分方程","authors":"S. Chandragiri","doi":"10.1134/s0037446624020149","DOIUrl":null,"url":null,"abstract":"<p>We study lattice paths by combinatorial methods on the positive lattice. We give some identity that produces the functional equations\nand generating functions to counting the lattice paths on or below the main diagonal.\nAlso, we consider the subdiagonal lattice paths in relation to lower triangular arrays.\nThis presents a Riordan array in conjunction with the columns of the matrix of the coefficients of\ncertain formal power series by implying an infinite lower triangular matrix <span>\\( F=(f_{x,y})_{x,y\\geqslant 0} \\)</span>.\nWe derive new combinatorial interpretations in terms of restricted lattice paths for some Riordan arrays.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riordan Arrays and Difference Equations of Subdiagonal Lattice Paths\",\"authors\":\"S. Chandragiri\",\"doi\":\"10.1134/s0037446624020149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study lattice paths by combinatorial methods on the positive lattice. We give some identity that produces the functional equations\\nand generating functions to counting the lattice paths on or below the main diagonal.\\nAlso, we consider the subdiagonal lattice paths in relation to lower triangular arrays.\\nThis presents a Riordan array in conjunction with the columns of the matrix of the coefficients of\\ncertain formal power series by implying an infinite lower triangular matrix <span>\\\\( F=(f_{x,y})_{x,y\\\\geqslant 0} \\\\)</span>.\\nWe derive new combinatorial interpretations in terms of restricted lattice paths for some Riordan arrays.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用组合方法研究正网格上的网格路径。此外,我们还考虑了与下三角阵列相关的子对角线网格路径。通过暗示一个无限下三角矩阵(F=(f_{x,y})_{x,y\geqslant 0} \),我们结合某些形式幂级数系数矩阵的列提出了一个瑞尔丹数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Riordan Arrays and Difference Equations of Subdiagonal Lattice Paths

We study lattice paths by combinatorial methods on the positive lattice. We give some identity that produces the functional equations and generating functions to counting the lattice paths on or below the main diagonal. Also, we consider the subdiagonal lattice paths in relation to lower triangular arrays. This presents a Riordan array in conjunction with the columns of the matrix of the coefficients of certain formal power series by implying an infinite lower triangular matrix \( F=(f_{x,y})_{x,y\geqslant 0} \). We derive new combinatorial interpretations in terms of restricted lattice paths for some Riordan arrays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信