从时态逻辑规范中模仿学习反馈控制器的反例指导

Thao Dang, Alexandre Donzé, Inzemamul Haque, Nikolaos Kekatos, Indranil Saha
{"title":"从时态逻辑规范中模仿学习反馈控制器的反例指导","authors":"Thao Dang, Alexandre Donzé, Inzemamul Haque, Nikolaos Kekatos, Indranil Saha","doi":"arxiv-2403.16593","DOIUrl":null,"url":null,"abstract":"We present a novel method for imitation learning for control requirements\nexpressed using Signal Temporal Logic (STL). More concretely we focus on the\nproblem of training a neural network to imitate a complex controller. The\nlearning process is guided by efficient data aggregation based on\ncounter-examples and a coverage measure. Moreover, we introduce a method to\nevaluate the performance of the learned controller via parameterization and\nparameter estimation of the STL requirements. We demonstrate our approach with\na flying robot case study.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counter-example guided Imitation Learning of Feedback Controllers from Temporal Logic Specifications\",\"authors\":\"Thao Dang, Alexandre Donzé, Inzemamul Haque, Nikolaos Kekatos, Indranil Saha\",\"doi\":\"arxiv-2403.16593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel method for imitation learning for control requirements\\nexpressed using Signal Temporal Logic (STL). More concretely we focus on the\\nproblem of training a neural network to imitate a complex controller. The\\nlearning process is guided by efficient data aggregation based on\\ncounter-examples and a coverage measure. Moreover, we introduce a method to\\nevaluate the performance of the learned controller via parameterization and\\nparameter estimation of the STL requirements. We demonstrate our approach with\\na flying robot case study.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.16593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种针对使用信号时态逻辑(STL)表达的控制要求进行模仿学习的新方法。更具体地说,我们关注的是训练神经网络模仿复杂控制器的问题。学习过程由基于反例和覆盖率测量的高效数据聚合指导。此外,我们还引入了一种方法,通过 STL 要求的参数化和参数估计来评估学习控制器的性能。我们通过飞行机器人案例研究来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counter-example guided Imitation Learning of Feedback Controllers from Temporal Logic Specifications
We present a novel method for imitation learning for control requirements expressed using Signal Temporal Logic (STL). More concretely we focus on the problem of training a neural network to imitate a complex controller. The learning process is guided by efficient data aggregation based on counter-examples and a coverage measure. Moreover, we introduce a method to evaluate the performance of the learned controller via parameterization and parameter estimation of the STL requirements. We demonstrate our approach with a flying robot case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信