多机器人系统的时空分布式信息路径规划

Binh Nguyen, Linh Nguyen, Truong X. Nghiem, Hung La, Jose Baca, Pablo Rangel, Miguel Cid Montoya, Thang Nguyen
{"title":"多机器人系统的时空分布式信息路径规划","authors":"Binh Nguyen, Linh Nguyen, Truong X. Nghiem, Hung La, Jose Baca, Pablo Rangel, Miguel Cid Montoya, Thang Nguyen","doi":"arxiv-2403.16489","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of informative path planning for a mobile\nrobotic sensor network in spatially temporally distributed mapping. The robots\nare able to gather noisy measurements from an area of interest during their\nmovements to build a Gaussian Process (GP) model of a spatio-temporal field.\nThe model is then utilized to predict the spatio-temporal phenomenon at\ndifferent points of interest. To spatially and temporally navigate the group of\nrobots so that they can optimally acquire maximal information gains while their\nconnectivity is preserved, we propose a novel multistep prediction informative\npath planning optimization strategy employing our newly defined local cost\nfunctions. By using the dual decomposition method, it is feasible and practical\nto effectively solve the optimization problem in a distributed manner. The\nproposed method was validated through synthetic experiments utilizing\nreal-world data sets.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially temporally distributed informative path planning for multi-robot systems\",\"authors\":\"Binh Nguyen, Linh Nguyen, Truong X. Nghiem, Hung La, Jose Baca, Pablo Rangel, Miguel Cid Montoya, Thang Nguyen\",\"doi\":\"arxiv-2403.16489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of informative path planning for a mobile\\nrobotic sensor network in spatially temporally distributed mapping. The robots\\nare able to gather noisy measurements from an area of interest during their\\nmovements to build a Gaussian Process (GP) model of a spatio-temporal field.\\nThe model is then utilized to predict the spatio-temporal phenomenon at\\ndifferent points of interest. To spatially and temporally navigate the group of\\nrobots so that they can optimally acquire maximal information gains while their\\nconnectivity is preserved, we propose a novel multistep prediction informative\\npath planning optimization strategy employing our newly defined local cost\\nfunctions. By using the dual decomposition method, it is feasible and practical\\nto effectively solve the optimization problem in a distributed manner. The\\nproposed method was validated through synthetic experiments utilizing\\nreal-world data sets.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.16489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了移动机器人传感器网络在时空分布图中的信息路径规划问题。机器人能够在移动过程中收集感兴趣区域的噪声测量数据,从而建立时空场的高斯过程(GP)模型,然后利用该模型预测不同感兴趣点的时空现象。为了在空间和时间上对机器人群进行导航,使其在保持连接性的同时获得最大的信息增益,我们提出了一种新颖的多步预测信息路径规划优化策略,该策略采用了我们新定义的局部成本函数。通过使用对偶分解法,以分布式方式有效解决优化问题是切实可行的。我们利用现实世界的数据集进行了合成实验,对所提出的方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatially temporally distributed informative path planning for multi-robot systems
This paper investigates the problem of informative path planning for a mobile robotic sensor network in spatially temporally distributed mapping. The robots are able to gather noisy measurements from an area of interest during their movements to build a Gaussian Process (GP) model of a spatio-temporal field. The model is then utilized to predict the spatio-temporal phenomenon at different points of interest. To spatially and temporally navigate the group of robots so that they can optimally acquire maximal information gains while their connectivity is preserved, we propose a novel multistep prediction informative path planning optimization strategy employing our newly defined local cost functions. By using the dual decomposition method, it is feasible and practical to effectively solve the optimization problem in a distributed manner. The proposed method was validated through synthetic experiments utilizing real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信