针对 3D 打印的数据驱动挤出力控制调整

Xavier Guidetti, Ankita Mukne, Marvin Rueppel, Yannick Nagel, Efe C. Balta, John Lygeros
{"title":"针对 3D 打印的数据驱动挤出力控制调整","authors":"Xavier Guidetti, Ankita Mukne, Marvin Rueppel, Yannick Nagel, Efe C. Balta, John Lygeros","doi":"arxiv-2403.16470","DOIUrl":null,"url":null,"abstract":"The quality of 3D prints often varies due to different conditions inherent to\neach print, such as filament type, print speed, and nozzle size. Closed-loop\nprocess control methods improve the accuracy and repeatability of 3D prints.\nHowever, optimal tuning of controllers for given process parameters and design\ngeometry is often a challenge with manually tuned controllers resulting in\ninconsistent and suboptimal results. This work employs Bayesian optimization to\nidentify the optimal controller parameters. Additionally, we explore transfer\nlearning in the context of 3D printing by leveraging prior information from\npast trials. By integrating optimized extrusion force control and transfer\nlearning, we provide a novel framework for closed-loop 3D printing and propose\nan automated calibration routine that produces high-quality prints for a\ndesired combination of print settings, material, and shape.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"258 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Extrusion Force Control Tuning for 3D Printing\",\"authors\":\"Xavier Guidetti, Ankita Mukne, Marvin Rueppel, Yannick Nagel, Efe C. Balta, John Lygeros\",\"doi\":\"arxiv-2403.16470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of 3D prints often varies due to different conditions inherent to\\neach print, such as filament type, print speed, and nozzle size. Closed-loop\\nprocess control methods improve the accuracy and repeatability of 3D prints.\\nHowever, optimal tuning of controllers for given process parameters and design\\ngeometry is often a challenge with manually tuned controllers resulting in\\ninconsistent and suboptimal results. This work employs Bayesian optimization to\\nidentify the optimal controller parameters. Additionally, we explore transfer\\nlearning in the context of 3D printing by leveraging prior information from\\npast trials. By integrating optimized extrusion force control and transfer\\nlearning, we provide a novel framework for closed-loop 3D printing and propose\\nan automated calibration routine that produces high-quality prints for a\\ndesired combination of print settings, material, and shape.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"258 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.16470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维打印的质量往往因每次打印的固有条件(如长丝类型、打印速度和喷嘴尺寸)不同而有所差异。然而,针对给定的过程参数和设计几何形状对控制器进行优化调整往往是一项挑战,手动调整控制器会导致不一致和次优的结果。这项工作采用贝叶斯优化法来确定最佳控制器参数。此外,我们还利用过去试验中的先验信息,探索了三维打印背景下的迁移学习。通过整合优化的挤出力控制和迁移学习,我们为闭环三维打印提供了一个新颖的框架,并提出了一种自动校准例程,可根据打印设置、材料和形状的理想组合生成高质量的打印件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Extrusion Force Control Tuning for 3D Printing
The quality of 3D prints often varies due to different conditions inherent to each print, such as filament type, print speed, and nozzle size. Closed-loop process control methods improve the accuracy and repeatability of 3D prints. However, optimal tuning of controllers for given process parameters and design geometry is often a challenge with manually tuned controllers resulting in inconsistent and suboptimal results. This work employs Bayesian optimization to identify the optimal controller parameters. Additionally, we explore transfer learning in the context of 3D printing by leveraging prior information from past trials. By integrating optimized extrusion force control and transfer learning, we provide a novel framework for closed-loop 3D printing and propose an automated calibration routine that produces high-quality prints for a desired combination of print settings, material, and shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信