从紧凑集合上的不精确测量中优化恢复算子族

Pub Date : 2024-03-25 DOI:10.1134/s0037446624020228
E. O. Sivkova
{"title":"从紧凑集合上的不精确测量中优化恢复算子族","authors":"E. O. Sivkova","doi":"10.1134/s0037446624020228","DOIUrl":null,"url":null,"abstract":"<p>Given a one-parameter family of continuous linear operators\n<span>\\( T(t):L_{2}(𝕉^{d})\\to L_{2}(𝕉^{d}) \\)</span>, with\n<span>\\( 0\\leq t&lt;\\infty \\)</span>, we consider the optimal\nrecovery of the values of\n<span>\\( T(\\tau) \\)</span> on the whole space by approximate information\non the values of\n<span>\\( T(t) \\)</span>, where <span>\\( t \\)</span> runs over a compact set\n<span>\\( K\\subset 𝕉_{+} \\)</span> and <span>\\( \\tau\\notin K \\)</span>.\nWe find a family of optimal methods for recovering the\nvalues of <span>\\( T(\\tau) \\)</span>.\nEach of these methods uses approximate measurements\nat no more than two points in <span>\\( K \\)</span> and\ndepends linearly on these measurements.\nAs a corollary, we provide some families of optimal methods\nfor recovering the solution of the heat equation\nat a given moment of time from\ninaccurate measurements on other time intervals and for\nsolving the Dirichlet problem for\na half-space on a hyperplane by inaccurate\nmeasurements on other hyperplanes.\nThe optimal recovery of the values of\n<span>\\( T(\\tau) \\)</span> from the indicated\ninformation reduces to finding the value of\nan extremal problem for the maximum with\ncontinuum many inequality-type constraints, i.e.,\nto finding the exact upper bound of the\nmaximized functional under these constraints.\nThis rather complicated task reduces\nto the infinite-dimensional problem of linear\nprogramming on the vector space of all\nfinite real measures on the <span>\\( \\sigma \\)</span>-algebra of\nLebesgue measurable sets in <span>\\( 𝕉^{d} \\)</span>.\nThis problem can be solved by some generalization of\nthe Karush–Kuhn–Tucker theorem,\nand its significance coincides with the significance\nof the original problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Recovery of a Family of Operators from Inaccurate Measurements on a Compact Set\",\"authors\":\"E. O. Sivkova\",\"doi\":\"10.1134/s0037446624020228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a one-parameter family of continuous linear operators\\n<span>\\\\( T(t):L_{2}(𝕉^{d})\\\\to L_{2}(𝕉^{d}) \\\\)</span>, with\\n<span>\\\\( 0\\\\leq t&lt;\\\\infty \\\\)</span>, we consider the optimal\\nrecovery of the values of\\n<span>\\\\( T(\\\\tau) \\\\)</span> on the whole space by approximate information\\non the values of\\n<span>\\\\( T(t) \\\\)</span>, where <span>\\\\( t \\\\)</span> runs over a compact set\\n<span>\\\\( K\\\\subset 𝕉_{+} \\\\)</span> and <span>\\\\( \\\\tau\\\\notin K \\\\)</span>.\\nWe find a family of optimal methods for recovering the\\nvalues of <span>\\\\( T(\\\\tau) \\\\)</span>.\\nEach of these methods uses approximate measurements\\nat no more than two points in <span>\\\\( K \\\\)</span> and\\ndepends linearly on these measurements.\\nAs a corollary, we provide some families of optimal methods\\nfor recovering the solution of the heat equation\\nat a given moment of time from\\ninaccurate measurements on other time intervals and for\\nsolving the Dirichlet problem for\\na half-space on a hyperplane by inaccurate\\nmeasurements on other hyperplanes.\\nThe optimal recovery of the values of\\n<span>\\\\( T(\\\\tau) \\\\)</span> from the indicated\\ninformation reduces to finding the value of\\nan extremal problem for the maximum with\\ncontinuum many inequality-type constraints, i.e.,\\nto finding the exact upper bound of the\\nmaximized functional under these constraints.\\nThis rather complicated task reduces\\nto the infinite-dimensional problem of linear\\nprogramming on the vector space of all\\nfinite real measures on the <span>\\\\( \\\\sigma \\\\)</span>-algebra of\\nLebesgue measurable sets in <span>\\\\( 𝕉^{d} \\\\)</span>.\\nThis problem can be solved by some generalization of\\nthe Karush–Kuhn–Tucker theorem,\\nand its significance coincides with the significance\\nof the original problem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624020228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624020228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定连续线性算子的单参数族( T(t):L_{2}(𝕉^{d})\to L_{2}(𝕉^{d}) \), with\( 0\leq t<;\T(t) \)值的近似信息,其中 \( t \)在一个紧凑集 \( K\subset 𝕉_{+} \)上运行,并且 \( \tau\notin K \)。我们找到了一系列最优方法来恢复(T(\tau) \)的值。这些方法中的每一种都使用了在(K \)中不超过两点的近似测量,并且线性地依赖于这些测量。作为推论,我们提供了一些最优方法系列,用于从其他时间间隔上的不精确测量恢复热方程在给定时刻的解,以及通过其他超平面上的不精确测量解决超平面上半空间的迪里夏特问题、这个相当复杂的任务被简化为在 \( 𝕉^{d} \)中Lebesgue可测集的 \( \sigma \)-代数的所有无穷实度量的向量空间上的线性编程的无穷维问题.这个问题可以通过卡鲁什-库恩-塔克定理的一些概括来解决,它的意义与原始问题的意义是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal Recovery of a Family of Operators from Inaccurate Measurements on a Compact Set

分享
查看原文
Optimal Recovery of a Family of Operators from Inaccurate Measurements on a Compact Set

Given a one-parameter family of continuous linear operators \( T(t):L_{2}(𝕉^{d})\to L_{2}(𝕉^{d}) \), with \( 0\leq t<\infty \), we consider the optimal recovery of the values of \( T(\tau) \) on the whole space by approximate information on the values of \( T(t) \), where \( t \) runs over a compact set \( K\subset 𝕉_{+} \) and \( \tau\notin K \). We find a family of optimal methods for recovering the values of \( T(\tau) \). Each of these methods uses approximate measurements at no more than two points in \( K \) and depends linearly on these measurements. As a corollary, we provide some families of optimal methods for recovering the solution of the heat equation at a given moment of time from inaccurate measurements on other time intervals and for solving the Dirichlet problem for a half-space on a hyperplane by inaccurate measurements on other hyperplanes. The optimal recovery of the values of \( T(\tau) \) from the indicated information reduces to finding the value of an extremal problem for the maximum with continuum many inequality-type constraints, i.e., to finding the exact upper bound of the maximized functional under these constraints. This rather complicated task reduces to the infinite-dimensional problem of linear programming on the vector space of all finite real measures on the \( \sigma \)-algebra of Lebesgue measurable sets in \( 𝕉^{d} \). This problem can be solved by some generalization of the Karush–Kuhn–Tucker theorem, and its significance coincides with the significance of the original problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信