F. Ljubinković, M. Janković, H. Gervásio, L. S. da Silva
{"title":"使用生成合成数据样本的 gan 对钢门式框架进行可靠性评估","authors":"F. Ljubinković, M. Janković, H. Gervásio, L. S. da Silva","doi":"10.1002/cepa.3043","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper addresses the challenge of reliability estimation in structural engineering, where determining failure probabilities is often uncertain due to insufficient characterization of randomness and scale of design problems. Current approaches, like EN 1990, lack sufficient data for research and simulations, particularly for low failure probabilities (around 10<sup>-4</sup>), making Monte Carlo simulations less accurate. The paper introduces Generative Adversarial Networks (GANs) as a solution to generate synthetic data to supplement existing examples. The study applies GANs to assess the reliability of steel portal-framed industrial buildings and evaluate the safety of this structural solution according to Eurocodes.</p>\n </div>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"7 1-2","pages":"260-269"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.3043","citationCount":"0","resultStr":"{\"title\":\"RELIABILITY ASSESSMENT OF STEEL PORTAL FRAMES USING GAN FOR GENERATING SYNTHETIC DATA SAMPLE\",\"authors\":\"F. Ljubinković, M. Janković, H. Gervásio, L. S. da Silva\",\"doi\":\"10.1002/cepa.3043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper addresses the challenge of reliability estimation in structural engineering, where determining failure probabilities is often uncertain due to insufficient characterization of randomness and scale of design problems. Current approaches, like EN 1990, lack sufficient data for research and simulations, particularly for low failure probabilities (around 10<sup>-4</sup>), making Monte Carlo simulations less accurate. The paper introduces Generative Adversarial Networks (GANs) as a solution to generate synthetic data to supplement existing examples. The study applies GANs to assess the reliability of steel portal-framed industrial buildings and evaluate the safety of this structural solution according to Eurocodes.</p>\\n </div>\",\"PeriodicalId\":100223,\"journal\":{\"name\":\"ce/papers\",\"volume\":\"7 1-2\",\"pages\":\"260-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.3043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ce/papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了结构工程中可靠性估算所面临的挑战,由于设计问题的随机性和规模特征不足,确定失效概率往往具有不确定性。目前的方法,如 EN 1990,缺乏足够的研究和模拟数据,尤其是低失效概率(约 10-4),使得蒙特卡罗模拟的准确性较低。本文介绍了生成对抗网络(GANs),作为生成合成数据以补充现有实例的解决方案。该研究应用 GANs 评估了门式钢结构工业建筑的可靠性,并根据欧洲规范评估了这种结构解决方案的安全性。
RELIABILITY ASSESSMENT OF STEEL PORTAL FRAMES USING GAN FOR GENERATING SYNTHETIC DATA SAMPLE
This paper addresses the challenge of reliability estimation in structural engineering, where determining failure probabilities is often uncertain due to insufficient characterization of randomness and scale of design problems. Current approaches, like EN 1990, lack sufficient data for research and simulations, particularly for low failure probabilities (around 10-4), making Monte Carlo simulations less accurate. The paper introduces Generative Adversarial Networks (GANs) as a solution to generate synthetic data to supplement existing examples. The study applies GANs to assess the reliability of steel portal-framed industrial buildings and evaluate the safety of this structural solution according to Eurocodes.