RGIE:一种与头颈部鳞状细胞癌放疗耐药性相关的基因筛选方法。

IF 1.5 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Qingzhe Meng, Dunhui Liu, Junhong Huang, Xinjie Yang, Huan Li, Zihui Yang, Jun Wang, Wanpeng Gao, Yahui Li, Rong Liu, Liying Yang, Jianhua Wei
{"title":"RGIE:一种与头颈部鳞状细胞癌放疗耐药性相关的基因筛选方法。","authors":"Qingzhe Meng, Dunhui Liu, Junhong Huang, Xinjie Yang, Huan Li, Zihui Yang, Jun Wang, Wanpeng Gao, Yahui Li, Rong Liu, Liying Yang, Jianhua Wei","doi":"10.2174/0118744710282465240315053136","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible.</p><p><strong>Methods: </strong>We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features.</p><p><strong>Results: </strong>Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR).</p><p><strong>Conclusion: </strong>RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.</p>","PeriodicalId":10991,"journal":{"name":"Current radiopharmaceuticals","volume":" ","pages":"341-355"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RGIE: A Gene Selection Method Related to Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma.\",\"authors\":\"Qingzhe Meng, Dunhui Liu, Junhong Huang, Xinjie Yang, Huan Li, Zihui Yang, Jun Wang, Wanpeng Gao, Yahui Li, Rong Liu, Liying Yang, Jianhua Wei\",\"doi\":\"10.2174/0118744710282465240315053136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible.</p><p><strong>Methods: </strong>We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features.</p><p><strong>Results: </strong>Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR).</p><p><strong>Conclusion: </strong>RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.</p>\",\"PeriodicalId\":10991,\"journal\":{\"name\":\"Current radiopharmaceuticals\",\"volume\":\" \",\"pages\":\"341-355\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118744710282465240315053136\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118744710282465240315053136","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:头颈部鳞状细胞癌(HNSCC头颈部鳞状细胞癌(HNSCC)是一种恶性程度高、侵袭性强、转移率高的恶性肿瘤。放疗作为HNSCC的重要辅助治疗手段,可以降低术后复发率,提高生存率。鉴定与 HNSCC 放疗耐药(HNSCC-RR)相关的基因有助于寻找潜在的治疗靶点。然而,从数以万计的基因中找出与放疗耐药相关的基因是一项具有挑战性的任务。虽然基因之间的相互作用对于阐明复杂的生物过程非常重要,但基因数量庞大使得基因相互作用的计算变得不可行:方法:我们提出了一种基因选择算法 RGIE,它基于 ReliefF、基因网络推断与树集合(GENIE3)和特征消除。ReliefF用于选择对HNSCC-RR有鉴别作用的特征子集,GENIE3基于该子集构建基因调控网络,分析基因间的调控关系,特征消除用于去除冗余和噪声特征:结果:识别出了9个基因(SPAG1、FIGN、NUBPL、CHMP5、TCF7L2、COQ10B、BSDC1、ZFPM1、GRPEL1),并将其用于识别HNSCC-RR,其准确率、精确率、召回率和AUC分别达到了0.9730、0.9679、0.9767和0.9885。最后,qRT-PCR 验证了九个特征基因在细胞系(SCC9、SCC9-RR)中的差异表达:结论:RGIE能有效筛选与HNSCC-RR相关的基因。结论:RGIE能有效筛选与HNSCC-RR相关的基因,这种方法有助于指导患者的临床治疗模式和开发潜在的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGIE: A Gene Selection Method Related to Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma.

Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible.

Methods: We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features.

Results: Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR).

Conclusion: RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current radiopharmaceuticals
Current radiopharmaceuticals PHARMACOLOGY & PHARMACY-
CiteScore
3.20
自引率
4.30%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信