Islem Jlali, Imen Touil, Hassen Ibn Haj Amor, Mohamed Amine Bouzid, Omar Hammouda, Elsa Heyman, Pierre Fontaine, Hamdi Chtourou, Rémi Rabasa-Lhoret, Georges Baquet, Sémah Tagougui
{"title":"无并发症的 2 型糖尿病患者肺功能正常,但肌肉氧合功能受损。","authors":"Islem Jlali, Imen Touil, Hassen Ibn Haj Amor, Mohamed Amine Bouzid, Omar Hammouda, Elsa Heyman, Pierre Fontaine, Hamdi Chtourou, Rémi Rabasa-Lhoret, Georges Baquet, Sémah Tagougui","doi":"10.1152/ajpendo.00392.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term hyperglycemia in individuals with type 2 diabetes (T2D) can detrimentally impact pulmonary function and muscle oxygenation. As a result, these factors can impede the body's adaptation to physical exertion. We aimed to evaluate the oxygen pathway during maximal exercise among overweight/obese individuals with type 2 diabetes free from complications, in comparison with a group of matched overweight/obese individuals without diabetes, specifically concentrating on the effects on pulmonary function and muscle oxygenation. Fifteen overweight/obese adults with type 2 diabetes [glycated hemoglobin (HbA1c) = 8.3 ± 1.2%] and 15 matched overweight/obese adults without diabetes underwent pre- and post exercise lung function assessment. A maximal incremental exercise test was conducted, monitoring muscle oxygenation using near-infrared spectroscopy and collecting arterial blood gas samples. Both groups exhibited normal lung volumes at rest and after exercise. Spirometric lung function did not significantly differ pre- and post exercise in either group. During maximal exercise, the type 2 diabetes group showed significantly lower augmentation in total hemoglobin and deoxygenated hemoglobin compared with the control group. Despite comparable usual physical activity levels and comparable heart rates at exhaustion, the type 2 diabetes group had a lower peak oxygen consumption than controls. No significant differences were found in arterial blood gas analyses ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) between the groups. Individuals with type 2 diabetes free from complications displayed normal pulmonary function at rest and post exercise. However, impaired skeletal muscle oxygenation during exercise, resulting from reduced limb blood volume and altered muscle deoxygenation, may contribute to the lower V̇o<sub>2peak</sub> observed in this population.<b>NEW & NOTEWORTHY</b> Individuals with type 2 diabetes free from micro- and macrovascular complications have normal resting pulmonary function, but their V̇o<sub>2peak</sub> is impaired due to poor skeletal muscle oxygenation during exercise. Tailoring exercise regimes for this population should prioritize interventions aimed at enhancing muscle oxygenation and blood flow improvement.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E640-E647"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired muscle oxygenation despite normal pulmonary function in type 2 diabetes without complications.\",\"authors\":\"Islem Jlali, Imen Touil, Hassen Ibn Haj Amor, Mohamed Amine Bouzid, Omar Hammouda, Elsa Heyman, Pierre Fontaine, Hamdi Chtourou, Rémi Rabasa-Lhoret, Georges Baquet, Sémah Tagougui\",\"doi\":\"10.1152/ajpendo.00392.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-term hyperglycemia in individuals with type 2 diabetes (T2D) can detrimentally impact pulmonary function and muscle oxygenation. As a result, these factors can impede the body's adaptation to physical exertion. We aimed to evaluate the oxygen pathway during maximal exercise among overweight/obese individuals with type 2 diabetes free from complications, in comparison with a group of matched overweight/obese individuals without diabetes, specifically concentrating on the effects on pulmonary function and muscle oxygenation. Fifteen overweight/obese adults with type 2 diabetes [glycated hemoglobin (HbA1c) = 8.3 ± 1.2%] and 15 matched overweight/obese adults without diabetes underwent pre- and post exercise lung function assessment. A maximal incremental exercise test was conducted, monitoring muscle oxygenation using near-infrared spectroscopy and collecting arterial blood gas samples. Both groups exhibited normal lung volumes at rest and after exercise. Spirometric lung function did not significantly differ pre- and post exercise in either group. During maximal exercise, the type 2 diabetes group showed significantly lower augmentation in total hemoglobin and deoxygenated hemoglobin compared with the control group. Despite comparable usual physical activity levels and comparable heart rates at exhaustion, the type 2 diabetes group had a lower peak oxygen consumption than controls. No significant differences were found in arterial blood gas analyses ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) between the groups. Individuals with type 2 diabetes free from complications displayed normal pulmonary function at rest and post exercise. However, impaired skeletal muscle oxygenation during exercise, resulting from reduced limb blood volume and altered muscle deoxygenation, may contribute to the lower V̇o<sub>2peak</sub> observed in this population.<b>NEW & NOTEWORTHY</b> Individuals with type 2 diabetes free from micro- and macrovascular complications have normal resting pulmonary function, but their V̇o<sub>2peak</sub> is impaired due to poor skeletal muscle oxygenation during exercise. Tailoring exercise regimes for this population should prioritize interventions aimed at enhancing muscle oxygenation and blood flow improvement.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E640-E647\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00392.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00392.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Impaired muscle oxygenation despite normal pulmonary function in type 2 diabetes without complications.
Long-term hyperglycemia in individuals with type 2 diabetes (T2D) can detrimentally impact pulmonary function and muscle oxygenation. As a result, these factors can impede the body's adaptation to physical exertion. We aimed to evaluate the oxygen pathway during maximal exercise among overweight/obese individuals with type 2 diabetes free from complications, in comparison with a group of matched overweight/obese individuals without diabetes, specifically concentrating on the effects on pulmonary function and muscle oxygenation. Fifteen overweight/obese adults with type 2 diabetes [glycated hemoglobin (HbA1c) = 8.3 ± 1.2%] and 15 matched overweight/obese adults without diabetes underwent pre- and post exercise lung function assessment. A maximal incremental exercise test was conducted, monitoring muscle oxygenation using near-infrared spectroscopy and collecting arterial blood gas samples. Both groups exhibited normal lung volumes at rest and after exercise. Spirometric lung function did not significantly differ pre- and post exercise in either group. During maximal exercise, the type 2 diabetes group showed significantly lower augmentation in total hemoglobin and deoxygenated hemoglobin compared with the control group. Despite comparable usual physical activity levels and comparable heart rates at exhaustion, the type 2 diabetes group had a lower peak oxygen consumption than controls. No significant differences were found in arterial blood gas analyses ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) between the groups. Individuals with type 2 diabetes free from complications displayed normal pulmonary function at rest and post exercise. However, impaired skeletal muscle oxygenation during exercise, resulting from reduced limb blood volume and altered muscle deoxygenation, may contribute to the lower V̇o2peak observed in this population.NEW & NOTEWORTHY Individuals with type 2 diabetes free from micro- and macrovascular complications have normal resting pulmonary function, but their V̇o2peak is impaired due to poor skeletal muscle oxygenation during exercise. Tailoring exercise regimes for this population should prioritize interventions aimed at enhancing muscle oxygenation and blood flow improvement.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.