根据基因表达的相互关系挖掘与胰腺导管腺癌相关的基因标记。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhao-Yue Zhang, Zi-Jie Sun, Dong Gao, Yu-Duo Hao, Hao Lin, Fen Liu
{"title":"根据基因表达的相互关系挖掘与胰腺导管腺癌相关的基因标记。","authors":"Zhao-Yue Zhang, Zi-Jie Sun, Dong Gao, Yu-Duo Hao, Hao Lin, Fen Liu","doi":"10.1049/syb2.12090","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of all pancreatic cancer cases, posing grave challenges to its diagnosis and treatment. Timely diagnosis is pivotal for improving patient survival, necessitating the discovery of precise biomarkers. An innovative approach was introduced to identify gene markers for precision PDAC detection. The core idea of our method is to discover gene pairs that display consistent opposite relative expression and differential co-expression patterns between PDAC and normal samples. Reversal gene pair analysis and differential partial correlation analysis were performed to determine reversal differential partial correlation (RDC) gene pairs. Using incremental feature selection, the authors refined the selected gene set and constructed a machine-learning model for PDAC recognition. As a result, the approach identified 10 RDC gene pairs. And the model could achieve a remarkable accuracy of 96.1% during cross-validation, surpassing gene expression-based models. The experiment on independent validation data confirmed the model's performance. Enrichment analysis revealed the involvement of these genes in essential biological processes and shed light on their potential roles in PDAC pathogenesis. Overall, the findings highlight the potential of these 10 RDC gene pairs as effective diagnostic markers for early PDAC detection, bringing hope for improving patient prognosis and survival.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excavation of gene markers associated with pancreatic ductal adenocarcinoma based on interrelationships of gene expression.\",\"authors\":\"Zhao-Yue Zhang, Zi-Jie Sun, Dong Gao, Yu-Duo Hao, Hao Lin, Fen Liu\",\"doi\":\"10.1049/syb2.12090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of all pancreatic cancer cases, posing grave challenges to its diagnosis and treatment. Timely diagnosis is pivotal for improving patient survival, necessitating the discovery of precise biomarkers. An innovative approach was introduced to identify gene markers for precision PDAC detection. The core idea of our method is to discover gene pairs that display consistent opposite relative expression and differential co-expression patterns between PDAC and normal samples. Reversal gene pair analysis and differential partial correlation analysis were performed to determine reversal differential partial correlation (RDC) gene pairs. Using incremental feature selection, the authors refined the selected gene set and constructed a machine-learning model for PDAC recognition. As a result, the approach identified 10 RDC gene pairs. And the model could achieve a remarkable accuracy of 96.1% during cross-validation, surpassing gene expression-based models. The experiment on independent validation data confirmed the model's performance. Enrichment analysis revealed the involvement of these genes in essential biological processes and shed light on their potential roles in PDAC pathogenesis. Overall, the findings highlight the potential of these 10 RDC gene pairs as effective diagnostic markers for early PDAC detection, bringing hope for improving patient prognosis and survival.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1049/syb2.12090\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12090","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)占所有胰腺癌病例的 95%,给诊断和治疗带来了严峻挑战。及时诊断是提高患者生存率的关键,因此需要发现精确的生物标志物。我们引入了一种创新方法来识别基因标志物,以精确检测 PDAC。我们方法的核心思想是发现在 PDAC 和正常样本之间显示一致的相反相对表达和差异共表达模式的基因对。通过反转基因对分析和差异部分相关性分析来确定反转差异部分相关性(RDC)基因对。作者利用增量特征选择,完善了所选基因集,并构建了一个用于识别 PDAC 的机器学习模型。结果,该方法识别出了 10 个 RDC 基因对。在交叉验证过程中,该模型的准确率高达 96.1%,超过了基于基因表达的模型。独立验证数据实验证实了该模型的性能。富集分析揭示了这些基因参与了重要的生物学过程,并揭示了它们在 PDAC 发病机制中的潜在作用。总之,研究结果凸显了这10对RDC基因作为早期PDAC检测的有效诊断标记物的潜力,为改善患者预后和生存带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excavation of gene markers associated with pancreatic ductal adenocarcinoma based on interrelationships of gene expression.

Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of all pancreatic cancer cases, posing grave challenges to its diagnosis and treatment. Timely diagnosis is pivotal for improving patient survival, necessitating the discovery of precise biomarkers. An innovative approach was introduced to identify gene markers for precision PDAC detection. The core idea of our method is to discover gene pairs that display consistent opposite relative expression and differential co-expression patterns between PDAC and normal samples. Reversal gene pair analysis and differential partial correlation analysis were performed to determine reversal differential partial correlation (RDC) gene pairs. Using incremental feature selection, the authors refined the selected gene set and constructed a machine-learning model for PDAC recognition. As a result, the approach identified 10 RDC gene pairs. And the model could achieve a remarkable accuracy of 96.1% during cross-validation, surpassing gene expression-based models. The experiment on independent validation data confirmed the model's performance. Enrichment analysis revealed the involvement of these genes in essential biological processes and shed light on their potential roles in PDAC pathogenesis. Overall, the findings highlight the potential of these 10 RDC gene pairs as effective diagnostic markers for early PDAC detection, bringing hope for improving patient prognosis and survival.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信