将免疫调节作为治疗线虫寄生虫班克罗夫蒂虫的创新点:巨噬细胞迁移抑制因子2的定时定量磷蛋白组学分析。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ishwar Singh, Anagha Kanichery, Chinmaya Narayana Kotimoole, Prashant Kumar Modi, Thottethodi Subrahmanya Keshava Prasad, Sugeerappa Laxamannappa Hoti
{"title":"将免疫调节作为治疗线虫寄生虫班克罗夫蒂虫的创新点:巨噬细胞迁移抑制因子2的定时定量磷蛋白组学分析。","authors":"Ishwar Singh, Anagha Kanichery, Chinmaya Narayana Kotimoole, Prashant Kumar Modi, Thottethodi Subrahmanya Keshava Prasad, Sugeerappa Laxamannappa Hoti","doi":"10.1089/omi.2024.0002","DOIUrl":null,"url":null,"abstract":"<p><p>Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. <i>Wuchereria bancrofti</i> is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (<i>MIF</i>) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite <i>W. bancrofti</i> also produces two homologs of <i>MIF</i> (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched <i>CDK4</i>, <i>CDK1</i>, and <i>DNAPK</i> kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for <i>W. bancrofti</i>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unpacking Immune Modulation as a Site of Therapeutics Innovation for Nematode Parasite <i>Wuchereria bancrofti</i>: A Temporal Quantitative Phosphoproteomics Profiling of Macrophage Migration Inhibitory Factor 2.\",\"authors\":\"Ishwar Singh, Anagha Kanichery, Chinmaya Narayana Kotimoole, Prashant Kumar Modi, Thottethodi Subrahmanya Keshava Prasad, Sugeerappa Laxamannappa Hoti\",\"doi\":\"10.1089/omi.2024.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. <i>Wuchereria bancrofti</i> is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (<i>MIF</i>) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite <i>W. bancrofti</i> also produces two homologs of <i>MIF</i> (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched <i>CDK4</i>, <i>CDK1</i>, and <i>DNAPK</i> kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for <i>W. bancrofti</i>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/omi.2024.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2024.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

线虫感染在人类和牲畜中都很常见,对地球健康和经济造成重大不利影响。盘尾丝虫是一种寄生线虫,可引起淋巴丝虫病,这是一种被忽视的热带疾病,可导致全球范围内的严重残疾和畸形。为了让盘尾丝虫病寄生虫在宿主体内长期存活,需要通过免疫调节采取复杂的免疫入侵策略。因此,免疫调节可以作为分子靶标的研究和创新场所。巨噬细胞迁移抑制因子(MIF)是一种多效细胞因子,对宿主的抗微生物警报系统和应激反应至关重要。有趣的是,线虫寄生虫 W. bancrofti 也产生两种 MIF 的同源物(Wba-MIF1 和 2)。利用基于质谱的磷酸化蛋白质组学方法,我们报告了关于 Wba-MIF2 在巨噬细胞中的免疫调节作用和信号转导机制的新发现。据此,我们在 467 个蛋白质上观察到了 1201 个磷酸化位点。在这 1201 个磷酸化位点中,丝氨酸(S)、苏氨酸(T)和酪氨酸(Y)残基上的磷酸化位点分别为 1075 个、117 个和 9 个。通过生物信息学分析,我们确定了 Wba-MIF2 处理后的主要通路,包括剪接体、T 细胞受体信号通路、Th17 分化通路、白细胞介素-17 信号通路和胰岛素信号通路。Wba-MIF2 处理还富集了 CDK4、CDK1 和 DNAPK 激酶。Wba-MIF2 与人类-MIF 信号通路的比较表明,两者具有相似的信号通路。这些发现共同为研究 Wba-MIF2 作为免疫调节剂的作用和机制提供了新的视角,并为今后针对班克罗夫特蠕虫的诊断和药物发现研究提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unpacking Immune Modulation as a Site of Therapeutics Innovation for Nematode Parasite Wuchereria bancrofti: A Temporal Quantitative Phosphoproteomics Profiling of Macrophage Migration Inhibitory Factor 2.

Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. Wuchereria bancrofti is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite W. bancrofti also produces two homologs of MIF (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched CDK4, CDK1, and DNAPK kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for W. bancrofti.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信