Irene Fischetti, Laura Botti, Roberta Sulsenti, Valeria Cancila, Claudia Enriquez, Renata Ferri, Marco Bregni, Filippo Crivelli, Claudio Tripodo, Mario P Colombo, Elena Jachetti
{"title":"针对 AR 和 EZH2 的联合疗法可抑制阉割耐药前列腺癌,增强抗肿瘤 T 细胞反应。","authors":"Irene Fischetti, Laura Botti, Roberta Sulsenti, Valeria Cancila, Claudia Enriquez, Renata Ferri, Marco Bregni, Filippo Crivelli, Claudio Tripodo, Mario P Colombo, Elena Jachetti","doi":"10.2217/epi-2023-0374","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Castration-resistant prostate cancer (CRPC) eventually becomes resistant to androgen receptor pathway inhibitors like enzalutamide. Immunotherapy also fails in CRPC. We propose a new approach to simultaneously revert enzalutamide resistance and rewire anti-tumor immunity. <b>Methods:</b> We investigated <i>in vitro</i> and in subcutaneous and spontaneous mouse models the effects of combining enzalutamide and GSK-126, a drug inhibiting the epigenetic modulator EZH2. <b>Results:</b> Enzalutamide and GSK-126 synergized to reduce CRPC growth, also restraining tumor neuroendocrine differentiation. The anti-tumor activity was lost in immunodeficient mice. Indeed, the combination treatment awoke cytotoxic activity and IFN-γ production of tumor-specific CD8<sup>+</sup> T lymphocytes. <b>Conclusion:</b> These results promote the combination of enzalutamide and GSK-126 in CRPC, also offering new avenues for immunotherapy in prostate cancer.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160446/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combined therapy targeting AR and EZH2 curbs castration-resistant prostate cancer enhancing anti-tumor T-cell response.\",\"authors\":\"Irene Fischetti, Laura Botti, Roberta Sulsenti, Valeria Cancila, Claudia Enriquez, Renata Ferri, Marco Bregni, Filippo Crivelli, Claudio Tripodo, Mario P Colombo, Elena Jachetti\",\"doi\":\"10.2217/epi-2023-0374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Castration-resistant prostate cancer (CRPC) eventually becomes resistant to androgen receptor pathway inhibitors like enzalutamide. Immunotherapy also fails in CRPC. We propose a new approach to simultaneously revert enzalutamide resistance and rewire anti-tumor immunity. <b>Methods:</b> We investigated <i>in vitro</i> and in subcutaneous and spontaneous mouse models the effects of combining enzalutamide and GSK-126, a drug inhibiting the epigenetic modulator EZH2. <b>Results:</b> Enzalutamide and GSK-126 synergized to reduce CRPC growth, also restraining tumor neuroendocrine differentiation. The anti-tumor activity was lost in immunodeficient mice. Indeed, the combination treatment awoke cytotoxic activity and IFN-γ production of tumor-specific CD8<sup>+</sup> T lymphocytes. <b>Conclusion:</b> These results promote the combination of enzalutamide and GSK-126 in CRPC, also offering new avenues for immunotherapy in prostate cancer.</p>\",\"PeriodicalId\":11959,\"journal\":{\"name\":\"Epigenomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2217/epi-2023-0374\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/epi-2023-0374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
目的:阉割耐药前列腺癌(CRPC)最终会对恩扎鲁胺等雄激素受体通路抑制剂产生耐药性。免疫疗法也在 CRPC 中失效。我们提出了一种新方法,可同时逆转恩杂鲁胺的耐药性和重启抗肿瘤免疫。方法:我们在体外、皮下和自发小鼠模型中研究了恩杂鲁胺与抑制表观遗传调节剂EZH2的药物GSK-126联用的效果。结果恩杂鲁胺和GSK-126能协同降低CRPC的生长,同时抑制肿瘤的神经内分泌分化。在免疫缺陷小鼠体内,这种抗肿瘤活性消失了。事实上,联合治疗可唤醒肿瘤特异性 CD8+ T 淋巴细胞的细胞毒性活性和 IFN-γ 生成。结论这些结果促进了恩杂鲁胺和GSK-126在CRPC中的联合应用,也为前列腺癌的免疫疗法提供了新途径。
Combined therapy targeting AR and EZH2 curbs castration-resistant prostate cancer enhancing anti-tumor T-cell response.
Aim: Castration-resistant prostate cancer (CRPC) eventually becomes resistant to androgen receptor pathway inhibitors like enzalutamide. Immunotherapy also fails in CRPC. We propose a new approach to simultaneously revert enzalutamide resistance and rewire anti-tumor immunity. Methods: We investigated in vitro and in subcutaneous and spontaneous mouse models the effects of combining enzalutamide and GSK-126, a drug inhibiting the epigenetic modulator EZH2. Results: Enzalutamide and GSK-126 synergized to reduce CRPC growth, also restraining tumor neuroendocrine differentiation. The anti-tumor activity was lost in immunodeficient mice. Indeed, the combination treatment awoke cytotoxic activity and IFN-γ production of tumor-specific CD8+ T lymphocytes. Conclusion: These results promote the combination of enzalutamide and GSK-126 in CRPC, also offering new avenues for immunotherapy in prostate cancer.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.