N. Y. Castillo-Leon, B. E. Tarazona-Romero, M. E. C. Gamarra, O. A. Acosta-Cárdenas, Y. P. Quizena-Fernandez, M. Y. Alarcon-Guerrero
{"title":"低规模和小规模沼气生产的厌氧消化工艺评估:综述","authors":"N. Y. Castillo-Leon, B. E. Tarazona-Romero, M. E. C. Gamarra, O. A. Acosta-Cárdenas, Y. P. Quizena-Fernandez, M. Y. Alarcon-Guerrero","doi":"10.1088/1757-899x/1299/1/012008","DOIUrl":null,"url":null,"abstract":"\n A theoretical analysis of biogas production technologies classified in two subgroups; low and micro scale, was carried out using the methodology of formal concept analysis (FCA) together with the VOSviewer and Conception Explorer tools for information processing, a series of attributes that each subsystem must comply with in terms of the sustainability of each technology were analyzed. The information selected for the development of the analysis required a quality study, based on the percentile of the journals in which the manuscript was published. The search for information was carried out in web sites such as: Scopus, Web Of Science, Dimensions and Lens among others. In total, 105 sources of academic information were analyzed, selecting 56 articles and 18 book chapters for the development of the work. In conclusion, it can be affirmed that low-scale biogas plants present more favorable characteristics than micro-scale plants; however, both technologies have a high potential for application worldwide in isolated or rural areas, supplying electric or thermal energy to less favored communities. Finally, it is important to point out that the methodology developed has proven to be a relevant tool for the classification of information and serves as a first step to group and relate search concepts by means of a deterministic set of attributes.","PeriodicalId":509593,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the anaerobic digestion process for low and micro-scale biogas production: a review\",\"authors\":\"N. Y. Castillo-Leon, B. E. Tarazona-Romero, M. E. C. Gamarra, O. A. Acosta-Cárdenas, Y. P. Quizena-Fernandez, M. Y. Alarcon-Guerrero\",\"doi\":\"10.1088/1757-899x/1299/1/012008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A theoretical analysis of biogas production technologies classified in two subgroups; low and micro scale, was carried out using the methodology of formal concept analysis (FCA) together with the VOSviewer and Conception Explorer tools for information processing, a series of attributes that each subsystem must comply with in terms of the sustainability of each technology were analyzed. The information selected for the development of the analysis required a quality study, based on the percentile of the journals in which the manuscript was published. The search for information was carried out in web sites such as: Scopus, Web Of Science, Dimensions and Lens among others. In total, 105 sources of academic information were analyzed, selecting 56 articles and 18 book chapters for the development of the work. In conclusion, it can be affirmed that low-scale biogas plants present more favorable characteristics than micro-scale plants; however, both technologies have a high potential for application worldwide in isolated or rural areas, supplying electric or thermal energy to less favored communities. Finally, it is important to point out that the methodology developed has proven to be a relevant tool for the classification of information and serves as a first step to group and relate search concepts by means of a deterministic set of attributes.\",\"PeriodicalId\":509593,\"journal\":{\"name\":\"IOP Conference Series: Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899x/1299/1/012008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1299/1/012008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用正式概念分析(FCA)方法,结合用于信息处理的 VOSviewer 和 Conception Explorer 工具,对分为低规模和微型两个分组的沼气生产技术进行了理论分析,分析了每种技术的可持续性方面每个子系统必须符合的一系列属性。为开展分析而选择的信息需要进行质量研究,研究的依据是稿件发表期刊的百分位数。搜索信息的网站包括Scopus、Web Of Science、Dimensions 和 Lens 等。总共分析了 105 个学术信息来源,选择了 56 篇文章和 18 个书籍章节用于工作的开展。总之,可以肯定的是,小规模沼气厂比微型沼气厂具有更有利的特性;不过,这两种技术在全球偏远或农村地区都有很大的应用潜力,可为条件较差的社区提供电力或热能。最后,必须指出的是,所开发的方法已被证明是信息分类的相关工具,也是通过一组确定的属性对搜索概念进行分组和关联的第一步。
Evaluation of the anaerobic digestion process for low and micro-scale biogas production: a review
A theoretical analysis of biogas production technologies classified in two subgroups; low and micro scale, was carried out using the methodology of formal concept analysis (FCA) together with the VOSviewer and Conception Explorer tools for information processing, a series of attributes that each subsystem must comply with in terms of the sustainability of each technology were analyzed. The information selected for the development of the analysis required a quality study, based on the percentile of the journals in which the manuscript was published. The search for information was carried out in web sites such as: Scopus, Web Of Science, Dimensions and Lens among others. In total, 105 sources of academic information were analyzed, selecting 56 articles and 18 book chapters for the development of the work. In conclusion, it can be affirmed that low-scale biogas plants present more favorable characteristics than micro-scale plants; however, both technologies have a high potential for application worldwide in isolated or rural areas, supplying electric or thermal energy to less favored communities. Finally, it is important to point out that the methodology developed has proven to be a relevant tool for the classification of information and serves as a first step to group and relate search concepts by means of a deterministic set of attributes.