钴取代镍铜锌纳米铁氧体的结构和磁性特征

IF 1 4区 材料科学
Ch. Sianglam, L. R. Singh, B. Thangjam
{"title":"钴取代镍铜锌纳米铁氧体的结构和磁性特征","authors":"Ch. Sianglam, L. R. Singh, B. Thangjam","doi":"10.15251/jor.2024.202.125","DOIUrl":null,"url":null,"abstract":"Co substituted Ni-Cu-Zn nanoferrites with the compositional formula Cox Ni0.5−x Cu0.3 Zn0.2 Fe2O4 (where x=0.0, 0.1, 0.2) were synthesized by Citrate Precursor method. The as prepared samples were calcined at 950o C for 30 min using a conventional muffle furnace. Characterizations were carried out using XRD, FESEM and VSM techniques.XRD peaks conform to spinel type structure. FESEM micrographs showed surface morphology. Magnetic characterizations were carried out by employing VSM technique. This paper investigates the synthesized samples as potential electronic materials for Multilayer Chip Inductor (MLCI).","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"66 23","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and magnetic characterizations of Co substituted Ni-Cu-Zn nanoferrites\",\"authors\":\"Ch. Sianglam, L. R. Singh, B. Thangjam\",\"doi\":\"10.15251/jor.2024.202.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co substituted Ni-Cu-Zn nanoferrites with the compositional formula Cox Ni0.5−x Cu0.3 Zn0.2 Fe2O4 (where x=0.0, 0.1, 0.2) were synthesized by Citrate Precursor method. The as prepared samples were calcined at 950o C for 30 min using a conventional muffle furnace. Characterizations were carried out using XRD, FESEM and VSM techniques.XRD peaks conform to spinel type structure. FESEM micrographs showed surface morphology. Magnetic characterizations were carried out by employing VSM technique. This paper investigates the synthesized samples as potential electronic materials for Multilayer Chip Inductor (MLCI).\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\"66 23\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2024.202.125\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2024.202.125","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用柠檬酸盐前驱体法合成了 Co 取代的 Ni-Cu-Zn 纳米铁氧体,其组成式为 Cox Ni0.5-x Cu0.3 Zn0.2 Fe2O4(其中 x=0.0, 0.1, 0.2)。制备好的样品使用传统马弗炉在 950 摄氏度下煅烧 30 分钟。利用 XRD、FESEM 和 VSM 技术对样品进行了表征。XRD 峰值符合尖晶石类型结构,FESEM 显微照片显示了表面形态。采用 VSM 技术进行了磁性表征。本文研究了合成样品作为多层片式电感器(MLCI)潜在电子材料的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and magnetic characterizations of Co substituted Ni-Cu-Zn nanoferrites
Co substituted Ni-Cu-Zn nanoferrites with the compositional formula Cox Ni0.5−x Cu0.3 Zn0.2 Fe2O4 (where x=0.0, 0.1, 0.2) were synthesized by Citrate Precursor method. The as prepared samples were calcined at 950o C for 30 min using a conventional muffle furnace. Characterizations were carried out using XRD, FESEM and VSM techniques.XRD peaks conform to spinel type structure. FESEM micrographs showed surface morphology. Magnetic characterizations were carried out by employing VSM technique. This paper investigates the synthesized samples as potential electronic materials for Multilayer Chip Inductor (MLCI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信