Yunhua He , Yigang Yang , Chao Wang , Anke Xie , Li Ma , Bin Wu , Yongdong Wu
{"title":"基于 EVM 的可验证矩阵计算跨语言智能合约实施方案","authors":"Yunhua He , Yigang Yang , Chao Wang , Anke Xie , Li Ma , Bin Wu , Yongdong Wu","doi":"10.1016/j.dcan.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses, which involve the calculation of complex functions, such as matrix operations. However, complex functions such as matrix operations are difficult to implement on Ethereum Virtual Machine (EVM)-based smart contract platforms due to their distributed security environment limitations. Existing off-chain methods often result in a significant reduction in contract execution efficiency, thus a platform software development kit interface implementation method has become a feasible way to reduce overheads, but this method cannot verify operation correctness and may leak sensitive user data. To solve the above problems, we propose a verifiable EVM-based smart contract cross-language implementation scheme for complex operations, especially matrix operations, which can guarantee operation correctness and user privacy while ensuring computational efficiency. In this scheme, a verifiable interaction process is designed to verify the computation process and results, and a matrix blinding technology is introduced to protect sensitive user data in the calculation process. The security analysis and performance tests show that the proposed scheme can satisfy the correctness and privacy of the cross-language implementation of smart contracts at a small additional efficiency cost.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 432-441"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A verifiable EVM-based cross-language smart contract implementation scheme for matrix calculation\",\"authors\":\"Yunhua He , Yigang Yang , Chao Wang , Anke Xie , Li Ma , Bin Wu , Yongdong Wu\",\"doi\":\"10.1016/j.dcan.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses, which involve the calculation of complex functions, such as matrix operations. However, complex functions such as matrix operations are difficult to implement on Ethereum Virtual Machine (EVM)-based smart contract platforms due to their distributed security environment limitations. Existing off-chain methods often result in a significant reduction in contract execution efficiency, thus a platform software development kit interface implementation method has become a feasible way to reduce overheads, but this method cannot verify operation correctness and may leak sensitive user data. To solve the above problems, we propose a verifiable EVM-based smart contract cross-language implementation scheme for complex operations, especially matrix operations, which can guarantee operation correctness and user privacy while ensuring computational efficiency. In this scheme, a verifiable interaction process is designed to verify the computation process and results, and a matrix blinding technology is introduced to protect sensitive user data in the calculation process. The security analysis and performance tests show that the proposed scheme can satisfy the correctness and privacy of the cross-language implementation of smart contracts at a small additional efficiency cost.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 432-441\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000348\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000348","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A verifiable EVM-based cross-language smart contract implementation scheme for matrix calculation
The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses, which involve the calculation of complex functions, such as matrix operations. However, complex functions such as matrix operations are difficult to implement on Ethereum Virtual Machine (EVM)-based smart contract platforms due to their distributed security environment limitations. Existing off-chain methods often result in a significant reduction in contract execution efficiency, thus a platform software development kit interface implementation method has become a feasible way to reduce overheads, but this method cannot verify operation correctness and may leak sensitive user data. To solve the above problems, we propose a verifiable EVM-based smart contract cross-language implementation scheme for complex operations, especially matrix operations, which can guarantee operation correctness and user privacy while ensuring computational efficiency. In this scheme, a verifiable interaction process is designed to verify the computation process and results, and a matrix blinding technology is introduced to protect sensitive user data in the calculation process. The security analysis and performance tests show that the proposed scheme can satisfy the correctness and privacy of the cross-language implementation of smart contracts at a small additional efficiency cost.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.