D. Anish Roshi;Phil Perillat;Felix Fernandez;Hamdi Mani;Benetge Perera;Periasamy K. Manoharan;Luis Quintero;Arun Venkataraman
{"title":"阿雷西博天文台 12 米望远镜低温宽带(2.5-14 千兆赫)接收器系统","authors":"D. Anish Roshi;Phil Perillat;Felix Fernandez;Hamdi Mani;Benetge Perera;Periasamy K. Manoharan;Luis Quintero;Arun Venkataraman","doi":"10.1029/2023RS007839","DOIUrl":null,"url":null,"abstract":"In this paper we present details of the construction of a wideband, cryogenic receiver and its successful commissioning on the Arecibo Observatory 12m telescope. The cryogenic receiver works in the 2.5–14 GHz frequency range. We upgraded the current narrow band, room temperature receivers of the telescope with the new wideband receiver. The current receiver is built around a Quadruple-Ridged Flared Horn (QRFH) developed by Akgiray et al. (2013, https://doi.org/10.1109/tap.2012.2229953). To mitigate strong radio frequency interference (RFI) below 2.7 GHz, we installed a highpass filter before the first stage low noise amplifier (LNA). The QRFH, highpass filter, noise coupler and LNA are located inside a cryostat and are cooled to 15 K. The measured receiver temperature is 25 K (median value) over 2.5–14 GHz. The system temperature measured at zenith is about 40 K near 3.1 and 8.6 GHz and the zenith antenna gains are 0.025 and 0.018 K/Jy at the two frequencies respectively. We recommend the following improvements to the telescope system: (a) Upgrade the highpass filter to achieve better RFI rejection near 2.5 GHz; (b) Improve aperture efficiency at 8.6 GHz; (c) Upgrade the intermediate frequency system to increase the upper frequency of operation from 12 to 14 GHz.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 3","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cryogenic wideband (2.5–14 GHz) receiver system for the Arecibo Observatory 12 m telescope\",\"authors\":\"D. Anish Roshi;Phil Perillat;Felix Fernandez;Hamdi Mani;Benetge Perera;Periasamy K. Manoharan;Luis Quintero;Arun Venkataraman\",\"doi\":\"10.1029/2023RS007839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present details of the construction of a wideband, cryogenic receiver and its successful commissioning on the Arecibo Observatory 12m telescope. The cryogenic receiver works in the 2.5–14 GHz frequency range. We upgraded the current narrow band, room temperature receivers of the telescope with the new wideband receiver. The current receiver is built around a Quadruple-Ridged Flared Horn (QRFH) developed by Akgiray et al. (2013, https://doi.org/10.1109/tap.2012.2229953). To mitigate strong radio frequency interference (RFI) below 2.7 GHz, we installed a highpass filter before the first stage low noise amplifier (LNA). The QRFH, highpass filter, noise coupler and LNA are located inside a cryostat and are cooled to 15 K. The measured receiver temperature is 25 K (median value) over 2.5–14 GHz. The system temperature measured at zenith is about 40 K near 3.1 and 8.6 GHz and the zenith antenna gains are 0.025 and 0.018 K/Jy at the two frequencies respectively. We recommend the following improvements to the telescope system: (a) Upgrade the highpass filter to achieve better RFI rejection near 2.5 GHz; (b) Improve aperture efficiency at 8.6 GHz; (c) Upgrade the intermediate frequency system to increase the upper frequency of operation from 12 to 14 GHz.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 3\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10495851/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10495851/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A cryogenic wideband (2.5–14 GHz) receiver system for the Arecibo Observatory 12 m telescope
In this paper we present details of the construction of a wideband, cryogenic receiver and its successful commissioning on the Arecibo Observatory 12m telescope. The cryogenic receiver works in the 2.5–14 GHz frequency range. We upgraded the current narrow band, room temperature receivers of the telescope with the new wideband receiver. The current receiver is built around a Quadruple-Ridged Flared Horn (QRFH) developed by Akgiray et al. (2013, https://doi.org/10.1109/tap.2012.2229953). To mitigate strong radio frequency interference (RFI) below 2.7 GHz, we installed a highpass filter before the first stage low noise amplifier (LNA). The QRFH, highpass filter, noise coupler and LNA are located inside a cryostat and are cooled to 15 K. The measured receiver temperature is 25 K (median value) over 2.5–14 GHz. The system temperature measured at zenith is about 40 K near 3.1 and 8.6 GHz and the zenith antenna gains are 0.025 and 0.018 K/Jy at the two frequencies respectively. We recommend the following improvements to the telescope system: (a) Upgrade the highpass filter to achieve better RFI rejection near 2.5 GHz; (b) Improve aperture efficiency at 8.6 GHz; (c) Upgrade the intermediate frequency system to increase the upper frequency of operation from 12 to 14 GHz.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.