回归模型在原油蒸馏装置腐蚀降解预测中的应用

B. Varbai, Richárd Wéber, Balázs Farkas, Péter Danyi, A. Krójer, R. Locskai, György Bohács, C.-S. Hős
{"title":"回归模型在原油蒸馏装置腐蚀降解预测中的应用","authors":"B. Varbai, Richárd Wéber, Balázs Farkas, Péter Danyi, A. Krójer, R. Locskai, György Bohács, C.-S. Hős","doi":"10.2478/adms-2024-0005","DOIUrl":null,"url":null,"abstract":"\n The crude distillation unit is the most critical elements in the refining process. Moreover, most of the equipment in the distillation unit are made of general carbon steels. Data analysis models, machine learning techniques can predict corrosion degradation rates. We used Pearson’s correlation coefficient and multiple linear regression, to predict the impact of process parameters. Altogether, we have analysed 84 channels of technological parameters, and 22 different types of crude oils. Among the corrosion agents, the chloride content strongly affected the weight loss of coupons, where the highest coefficient was 0.68. The most influential parameter is found to be the pH value. Thus, an estimation method of the pH value is set up to predict the corrosion degradation rate. The regression correlation for estimating the pH value is 0.53 if the corrosion agents are not used, which can be improved to 0.76 if the corrosion agents are also used in the regression analysis.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"15 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Regression Models on the Prediction of Corrosion Degradation of a Crude Oil Distillation Unit\",\"authors\":\"B. Varbai, Richárd Wéber, Balázs Farkas, Péter Danyi, A. Krójer, R. Locskai, György Bohács, C.-S. Hős\",\"doi\":\"10.2478/adms-2024-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The crude distillation unit is the most critical elements in the refining process. Moreover, most of the equipment in the distillation unit are made of general carbon steels. Data analysis models, machine learning techniques can predict corrosion degradation rates. We used Pearson’s correlation coefficient and multiple linear regression, to predict the impact of process parameters. Altogether, we have analysed 84 channels of technological parameters, and 22 different types of crude oils. Among the corrosion agents, the chloride content strongly affected the weight loss of coupons, where the highest coefficient was 0.68. The most influential parameter is found to be the pH value. Thus, an estimation method of the pH value is set up to predict the corrosion degradation rate. The regression correlation for estimating the pH value is 0.53 if the corrosion agents are not used, which can be improved to 0.76 if the corrosion agents are also used in the regression analysis.\",\"PeriodicalId\":504147,\"journal\":{\"name\":\"Advances in Materials Science\",\"volume\":\"15 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/adms-2024-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2024-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原油蒸馏装置是炼油过程中最关键的部分。此外,蒸馏装置中的大部分设备都由普通碳钢制成。数据分析模型、机器学习技术可以预测腐蚀降解率。我们使用皮尔逊相关系数和多元线性回归来预测工艺参数的影响。我们总共分析了 84 种工艺参数和 22 种不同类型的原油。在腐蚀剂中,氯化物含量对试样的重量损失影响很大,最高系数为 0.68。影响最大的参数是 pH 值。因此,建立了一种 pH 值估算方法来预测腐蚀降解率。如果不使用腐蚀剂,估计 pH 值的回归相关系数为 0.53,如果在回归分析中也使用腐蚀剂,则相关系数可提高到 0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Regression Models on the Prediction of Corrosion Degradation of a Crude Oil Distillation Unit
The crude distillation unit is the most critical elements in the refining process. Moreover, most of the equipment in the distillation unit are made of general carbon steels. Data analysis models, machine learning techniques can predict corrosion degradation rates. We used Pearson’s correlation coefficient and multiple linear regression, to predict the impact of process parameters. Altogether, we have analysed 84 channels of technological parameters, and 22 different types of crude oils. Among the corrosion agents, the chloride content strongly affected the weight loss of coupons, where the highest coefficient was 0.68. The most influential parameter is found to be the pH value. Thus, an estimation method of the pH value is set up to predict the corrosion degradation rate. The regression correlation for estimating the pH value is 0.53 if the corrosion agents are not used, which can be improved to 0.76 if the corrosion agents are also used in the regression analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信