{"title":"激光熔覆 WC-Fe 基涂层的优化和磨损性能分析","authors":"Youhong Cao, Ziqiang Yin, Y. Zhan, Shouren Wang, Daosheng Wen, Gaoqi Wang, Dianxiu Xia, Yitong Li, Dongxu Hou","doi":"10.1784/insi.2024.66.3.153","DOIUrl":null,"url":null,"abstract":"In this study, a WC-Fe-based coating is prepared on a 45 steel substrate utilising laser cladding technology. To optimise the composition of the Fe-based alloy powder, a thorough analysis of the cracks observed during the formation of the cladding layer is conducted. Elemental control\n of the WC-Fe-based alloy powder is employed to mitigate issues such as porosity and slagging, consequently reducing the susceptibility to cracking. The optimised WC-Fe-based alloy coating exhibits enhanced wear and abrasion resistance when compared to the widely used Ni45 coating. Microstructural\n investigations reveal that both coatings feature dendrites, cellular crystals and equiaxial crystals; however, the WC-Fe coating displays a finer and denser microstructure, highlighting its superior characteristics. Hardness and abrasion resistance tests demonstrate the exceptional performance\n of the WC-Fe-based coatings, having approximately three times the hardness of the substrate and a wear rate approximately seven times lower than that of the substrate. The friction coefficient remains consistently stable for the WC-Fe-based coatings at approximately 0.4, indicative of remarkable\n friction reduction and abrasion resistance.","PeriodicalId":506650,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"252 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation and wear performance analysis of laser-cladded WC-Fe-based coating\",\"authors\":\"Youhong Cao, Ziqiang Yin, Y. Zhan, Shouren Wang, Daosheng Wen, Gaoqi Wang, Dianxiu Xia, Yitong Li, Dongxu Hou\",\"doi\":\"10.1784/insi.2024.66.3.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a WC-Fe-based coating is prepared on a 45 steel substrate utilising laser cladding technology. To optimise the composition of the Fe-based alloy powder, a thorough analysis of the cracks observed during the formation of the cladding layer is conducted. Elemental control\\n of the WC-Fe-based alloy powder is employed to mitigate issues such as porosity and slagging, consequently reducing the susceptibility to cracking. The optimised WC-Fe-based alloy coating exhibits enhanced wear and abrasion resistance when compared to the widely used Ni45 coating. Microstructural\\n investigations reveal that both coatings feature dendrites, cellular crystals and equiaxial crystals; however, the WC-Fe coating displays a finer and denser microstructure, highlighting its superior characteristics. Hardness and abrasion resistance tests demonstrate the exceptional performance\\n of the WC-Fe-based coatings, having approximately three times the hardness of the substrate and a wear rate approximately seven times lower than that of the substrate. The friction coefficient remains consistently stable for the WC-Fe-based coatings at approximately 0.4, indicative of remarkable\\n friction reduction and abrasion resistance.\",\"PeriodicalId\":506650,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"252 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2024.66.3.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2024.66.3.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimisation and wear performance analysis of laser-cladded WC-Fe-based coating
In this study, a WC-Fe-based coating is prepared on a 45 steel substrate utilising laser cladding technology. To optimise the composition of the Fe-based alloy powder, a thorough analysis of the cracks observed during the formation of the cladding layer is conducted. Elemental control
of the WC-Fe-based alloy powder is employed to mitigate issues such as porosity and slagging, consequently reducing the susceptibility to cracking. The optimised WC-Fe-based alloy coating exhibits enhanced wear and abrasion resistance when compared to the widely used Ni45 coating. Microstructural
investigations reveal that both coatings feature dendrites, cellular crystals and equiaxial crystals; however, the WC-Fe coating displays a finer and denser microstructure, highlighting its superior characteristics. Hardness and abrasion resistance tests demonstrate the exceptional performance
of the WC-Fe-based coatings, having approximately three times the hardness of the substrate and a wear rate approximately seven times lower than that of the substrate. The friction coefficient remains consistently stable for the WC-Fe-based coatings at approximately 0.4, indicative of remarkable
friction reduction and abrasion resistance.