Kazuhiro Ohashi , Ayaka Hayashida , Atsuko Nozawa, Shigeaki Ito
{"title":"血管芯片中早期动脉粥样硬化的 RNA 测序分析及其在比较可燃卷烟和加热烟草制品中的应用","authors":"Kazuhiro Ohashi , Ayaka Hayashida , Atsuko Nozawa, Shigeaki Ito","doi":"10.1016/j.crtox.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><p>Our previous study showed promising results in replicating early-stage atherosclerosis when vascular endothelial cells (VECs) were exposed to cigarette smoke (CS) extract via M0 macrophages. We used an organ-on-a-chip system as an alternative to animal testing to model atherosclerosis, which is a complex disease involving endothelial and immune cell communications. By incorporating macrophages into the vascular-on-a-chip system, we aimed to mimic the indirect effects of inhalable substances, such as CS, on VECs. In the current study, we further examined the suitability of our <em>in vitro</em> system for mimicking early-stage atherosclerosis by transcriptomic analyses of VECs exposed to CS directly or indirectly via macrophages. We also incorporated M1 macrophages to replicate a preexisting inflammatory state. We found a greater number of differentially expressed genes (DEGs) in direct exposure methods than indirect exposure methods. However, a pathway analysis showed that the direct exposure of CS to VECs primarily caused cell death-related pathway alterations, and the “Atherosclerosis Signaling” pathway was predicted to be negatively regulated. Indirect exposure via M0 macrophages similarly showed that the identified DEGs were related to cell death, while the “Atherosclerosis Signaling” pathway was predicted to be activated. In contrast, cell death-related pathway alterations were not observed by indirect exposure of CS to VECs via M1 macrophages, but the pathway perturbations were similar to a pro-inflammatory positive control. In addition, the “Atherosclerosis Signaling” pathway was predicted to be activated in VECs that were indirectly exposed to CS via M1 macrophages. These results suggest that M0 or M1 macrophages contribute to atherogenic transcriptomic changes in VECs, although they affect cell death-related pathways differently. We also used indirect exposure methods to compare the effects of CS and heated tobacco product (HTP) aerosol. Notably, gene expression changes related to atherosclerosis were less pronounced in HTP aerosol-exposed VECs than CS. Our study highlights the utility of the vascular-on-a-chip system with indirect exposure of CS extract via macrophages for replicating atherogenesis and suggests a reduced risk potential of the HTP. This research contributes to advancing alternatives to animal testing for toxicological and disease modeling studies.</p></div>","PeriodicalId":11236,"journal":{"name":"Current Research in Toxicology","volume":"6 ","pages":"Article 100163"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666027X24000161/pdfft?md5=d9dbee79c936851f77c5e3c234823928&pid=1-s2.0-S2666027X24000161-main.pdf","citationCount":"0","resultStr":"{\"title\":\"RNA sequencing analysis of early-stage atherosclerosis in vascular-on-a-chip and its application for comparing combustible cigarettes with heated tobacco products\",\"authors\":\"Kazuhiro Ohashi , Ayaka Hayashida , Atsuko Nozawa, Shigeaki Ito\",\"doi\":\"10.1016/j.crtox.2024.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our previous study showed promising results in replicating early-stage atherosclerosis when vascular endothelial cells (VECs) were exposed to cigarette smoke (CS) extract via M0 macrophages. We used an organ-on-a-chip system as an alternative to animal testing to model atherosclerosis, which is a complex disease involving endothelial and immune cell communications. By incorporating macrophages into the vascular-on-a-chip system, we aimed to mimic the indirect effects of inhalable substances, such as CS, on VECs. In the current study, we further examined the suitability of our <em>in vitro</em> system for mimicking early-stage atherosclerosis by transcriptomic analyses of VECs exposed to CS directly or indirectly via macrophages. We also incorporated M1 macrophages to replicate a preexisting inflammatory state. We found a greater number of differentially expressed genes (DEGs) in direct exposure methods than indirect exposure methods. However, a pathway analysis showed that the direct exposure of CS to VECs primarily caused cell death-related pathway alterations, and the “Atherosclerosis Signaling” pathway was predicted to be negatively regulated. Indirect exposure via M0 macrophages similarly showed that the identified DEGs were related to cell death, while the “Atherosclerosis Signaling” pathway was predicted to be activated. In contrast, cell death-related pathway alterations were not observed by indirect exposure of CS to VECs via M1 macrophages, but the pathway perturbations were similar to a pro-inflammatory positive control. In addition, the “Atherosclerosis Signaling” pathway was predicted to be activated in VECs that were indirectly exposed to CS via M1 macrophages. These results suggest that M0 or M1 macrophages contribute to atherogenic transcriptomic changes in VECs, although they affect cell death-related pathways differently. We also used indirect exposure methods to compare the effects of CS and heated tobacco product (HTP) aerosol. Notably, gene expression changes related to atherosclerosis were less pronounced in HTP aerosol-exposed VECs than CS. Our study highlights the utility of the vascular-on-a-chip system with indirect exposure of CS extract via macrophages for replicating atherogenesis and suggests a reduced risk potential of the HTP. This research contributes to advancing alternatives to animal testing for toxicological and disease modeling studies.</p></div>\",\"PeriodicalId\":11236,\"journal\":{\"name\":\"Current Research in Toxicology\",\"volume\":\"6 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000161/pdfft?md5=d9dbee79c936851f77c5e3c234823928&pid=1-s2.0-S2666027X24000161-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666027X24000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666027X24000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
RNA sequencing analysis of early-stage atherosclerosis in vascular-on-a-chip and its application for comparing combustible cigarettes with heated tobacco products
Our previous study showed promising results in replicating early-stage atherosclerosis when vascular endothelial cells (VECs) were exposed to cigarette smoke (CS) extract via M0 macrophages. We used an organ-on-a-chip system as an alternative to animal testing to model atherosclerosis, which is a complex disease involving endothelial and immune cell communications. By incorporating macrophages into the vascular-on-a-chip system, we aimed to mimic the indirect effects of inhalable substances, such as CS, on VECs. In the current study, we further examined the suitability of our in vitro system for mimicking early-stage atherosclerosis by transcriptomic analyses of VECs exposed to CS directly or indirectly via macrophages. We also incorporated M1 macrophages to replicate a preexisting inflammatory state. We found a greater number of differentially expressed genes (DEGs) in direct exposure methods than indirect exposure methods. However, a pathway analysis showed that the direct exposure of CS to VECs primarily caused cell death-related pathway alterations, and the “Atherosclerosis Signaling” pathway was predicted to be negatively regulated. Indirect exposure via M0 macrophages similarly showed that the identified DEGs were related to cell death, while the “Atherosclerosis Signaling” pathway was predicted to be activated. In contrast, cell death-related pathway alterations were not observed by indirect exposure of CS to VECs via M1 macrophages, but the pathway perturbations were similar to a pro-inflammatory positive control. In addition, the “Atherosclerosis Signaling” pathway was predicted to be activated in VECs that were indirectly exposed to CS via M1 macrophages. These results suggest that M0 or M1 macrophages contribute to atherogenic transcriptomic changes in VECs, although they affect cell death-related pathways differently. We also used indirect exposure methods to compare the effects of CS and heated tobacco product (HTP) aerosol. Notably, gene expression changes related to atherosclerosis were less pronounced in HTP aerosol-exposed VECs than CS. Our study highlights the utility of the vascular-on-a-chip system with indirect exposure of CS extract via macrophages for replicating atherogenesis and suggests a reduced risk potential of the HTP. This research contributes to advancing alternatives to animal testing for toxicological and disease modeling studies.