{"title":"利用水热法分析伊达尔戈高岭土向方解石沸石和次生相的转化过程","authors":"","doi":"10.1016/j.bsecv.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the transformation of cancrinite-type zeolite, together with secondary phases, in a hydrothermal system. The mineral kaolin and NaOH were used as precursors under self-generated pressure at 140<!--> <!-->°C, varying the reaction time at intervals of 0 to 10<!--> <!-->hours. The kaolin, the main precursor, was subjected to X-ray diffraction (XRD), elemental chemical composition (XRF) and Fourier Transform IR Spectroscopy (FT-IR) analyses. The resulting solids were characterized by XRD. Initially, crystalline phases such as Na-P2 zeolites, gismondine, analcime, natrolite and sodalite were formed, but with time they became unstable and dissolved to form new phases. At 8<!--> <!-->hours of reaction, the cancrinite zeolite predominated, fulfilling the main objective of the study. The solid material was analyzed by scanning electron microscopy (SEM) and FT-IR. The behavior of Na, Si and Al in the solutions was evaluated over time by inductre coupled plasma (ICP). It was conclusively demonstrated that kaolin from Hidalgo is a feasible precursor to synthesize zeolites, cancrinite type as predominant phase in 8<!--> <!-->hours at 140<!--> <!-->°C, using moderate concentrations of NaOH.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0366317524000049/pdfft?md5=433751747e2a43d656da2581dbfa7a9a&pid=1-s2.0-S0366317524000049-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Análisis de la transformación del caolín de Hidalgo en zeolita cancrinita y fases secundarias por el método hidrotermal\",\"authors\":\"\",\"doi\":\"10.1016/j.bsecv.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the transformation of cancrinite-type zeolite, together with secondary phases, in a hydrothermal system. The mineral kaolin and NaOH were used as precursors under self-generated pressure at 140<!--> <!-->°C, varying the reaction time at intervals of 0 to 10<!--> <!-->hours. The kaolin, the main precursor, was subjected to X-ray diffraction (XRD), elemental chemical composition (XRF) and Fourier Transform IR Spectroscopy (FT-IR) analyses. The resulting solids were characterized by XRD. Initially, crystalline phases such as Na-P2 zeolites, gismondine, analcime, natrolite and sodalite were formed, but with time they became unstable and dissolved to form new phases. At 8<!--> <!-->hours of reaction, the cancrinite zeolite predominated, fulfilling the main objective of the study. The solid material was analyzed by scanning electron microscopy (SEM) and FT-IR. The behavior of Na, Si and Al in the solutions was evaluated over time by inductre coupled plasma (ICP). It was conclusively demonstrated that kaolin from Hidalgo is a feasible precursor to synthesize zeolites, cancrinite type as predominant phase in 8<!--> <!-->hours at 140<!--> <!-->°C, using moderate concentrations of NaOH.</p></div>\",\"PeriodicalId\":56330,\"journal\":{\"name\":\"Boletin de la Sociedad Espanola de Ceramica y Vidrio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0366317524000049/pdfft?md5=433751747e2a43d656da2581dbfa7a9a&pid=1-s2.0-S0366317524000049-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletin de la Sociedad Espanola de Ceramica y Vidrio\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0366317524000049\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317524000049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Análisis de la transformación del caolín de Hidalgo en zeolita cancrinita y fases secundarias por el método hidrotermal
This study investigated the transformation of cancrinite-type zeolite, together with secondary phases, in a hydrothermal system. The mineral kaolin and NaOH were used as precursors under self-generated pressure at 140 °C, varying the reaction time at intervals of 0 to 10 hours. The kaolin, the main precursor, was subjected to X-ray diffraction (XRD), elemental chemical composition (XRF) and Fourier Transform IR Spectroscopy (FT-IR) analyses. The resulting solids were characterized by XRD. Initially, crystalline phases such as Na-P2 zeolites, gismondine, analcime, natrolite and sodalite were formed, but with time they became unstable and dissolved to form new phases. At 8 hours of reaction, the cancrinite zeolite predominated, fulfilling the main objective of the study. The solid material was analyzed by scanning electron microscopy (SEM) and FT-IR. The behavior of Na, Si and Al in the solutions was evaluated over time by inductre coupled plasma (ICP). It was conclusively demonstrated that kaolin from Hidalgo is a feasible precursor to synthesize zeolites, cancrinite type as predominant phase in 8 hours at 140 °C, using moderate concentrations of NaOH.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.