{"title":"开发用于预测商用飞机异常的机器学习模型","authors":"","doi":"10.1016/j.dsm.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Airplanes are a social necessity for movement of humans, goods, and other. They are generally safe modes of transportation; however, incidents and accidents occasionally occur. To prevent aviation accidents, it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data. This study combined data-quality detection, anomaly detection, and abnormality-classification-model development. The research methodology involved the following stages: problem statement, data selection and labeling, prediction-model development, deployment, and testing. The data labeling process was based on the rules framed by the international civil aviation organization for commercial, jet-engine flights and validated by expert commercial pilots. The results showed that the best prediction model, the quadratic-discriminant-analysis, was 93% accurate, indicating a “good fit”. Moreover, the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96, respectively, thus confirming its “good fit”.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764924000146/pdfft?md5=72d22c62c77d91a47de3980ce379bce3&pid=1-s2.0-S2666764924000146-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a machine learning model for predicting abnormalities of commercial airplanes\",\"authors\":\"\",\"doi\":\"10.1016/j.dsm.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Airplanes are a social necessity for movement of humans, goods, and other. They are generally safe modes of transportation; however, incidents and accidents occasionally occur. To prevent aviation accidents, it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data. This study combined data-quality detection, anomaly detection, and abnormality-classification-model development. The research methodology involved the following stages: problem statement, data selection and labeling, prediction-model development, deployment, and testing. The data labeling process was based on the rules framed by the international civil aviation organization for commercial, jet-engine flights and validated by expert commercial pilots. The results showed that the best prediction model, the quadratic-discriminant-analysis, was 93% accurate, indicating a “good fit”. Moreover, the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96, respectively, thus confirming its “good fit”.</p></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666764924000146/pdfft?md5=72d22c62c77d91a47de3980ce379bce3&pid=1-s2.0-S2666764924000146-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764924000146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a machine learning model for predicting abnormalities of commercial airplanes
Airplanes are a social necessity for movement of humans, goods, and other. They are generally safe modes of transportation; however, incidents and accidents occasionally occur. To prevent aviation accidents, it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data. This study combined data-quality detection, anomaly detection, and abnormality-classification-model development. The research methodology involved the following stages: problem statement, data selection and labeling, prediction-model development, deployment, and testing. The data labeling process was based on the rules framed by the international civil aviation organization for commercial, jet-engine flights and validated by expert commercial pilots. The results showed that the best prediction model, the quadratic-discriminant-analysis, was 93% accurate, indicating a “good fit”. Moreover, the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96, respectively, thus confirming its “good fit”.