{"title":"壳体数量对利用 FDM/FFF 技术制造的零件的部分机械性能的影响","authors":"Wiktor Szot, Mateusz Rudnik","doi":"10.2478/adms-2024-0006","DOIUrl":null,"url":null,"abstract":"\n The technological parameters of 3D printing have an influence on the mechanical properties of the manufactured components. The purpose of the article was to study the comparative influence of the technological parameter of the number of shells variable in two stages (2 and 10) on selected mechanical properties. The maximum tensile stress for the number of shells 10 was 39.80 MPa, which is higher compared to the number of shells 2: 30.98 MPa. In the case of the maximum bending stress for the number of shells 10, an average value of 61.02 MPa was obtained, which is higher compared to the number of shells of 2: 37.46 MPa. Furthermore strong fit of the Kelvin-Voight model was obtained, as confirmed by the values of the Cℎi\n 2: 0.0001 and R\n 2: 0.997 coefficients.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"1 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Number of Shells on Selected Mechanical Properties of Parts Manufactured by FDM/FFF Technology\",\"authors\":\"Wiktor Szot, Mateusz Rudnik\",\"doi\":\"10.2478/adms-2024-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The technological parameters of 3D printing have an influence on the mechanical properties of the manufactured components. The purpose of the article was to study the comparative influence of the technological parameter of the number of shells variable in two stages (2 and 10) on selected mechanical properties. The maximum tensile stress for the number of shells 10 was 39.80 MPa, which is higher compared to the number of shells 2: 30.98 MPa. In the case of the maximum bending stress for the number of shells 10, an average value of 61.02 MPa was obtained, which is higher compared to the number of shells of 2: 37.46 MPa. Furthermore strong fit of the Kelvin-Voight model was obtained, as confirmed by the values of the Cℎi\\n 2: 0.0001 and R\\n 2: 0.997 coefficients.\",\"PeriodicalId\":504147,\"journal\":{\"name\":\"Advances in Materials Science\",\"volume\":\"1 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/adms-2024-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of the Number of Shells on Selected Mechanical Properties of Parts Manufactured by FDM/FFF Technology
The technological parameters of 3D printing have an influence on the mechanical properties of the manufactured components. The purpose of the article was to study the comparative influence of the technological parameter of the number of shells variable in two stages (2 and 10) on selected mechanical properties. The maximum tensile stress for the number of shells 10 was 39.80 MPa, which is higher compared to the number of shells 2: 30.98 MPa. In the case of the maximum bending stress for the number of shells 10, an average value of 61.02 MPa was obtained, which is higher compared to the number of shells of 2: 37.46 MPa. Furthermore strong fit of the Kelvin-Voight model was obtained, as confirmed by the values of the Cℎi
2: 0.0001 and R
2: 0.997 coefficients.