{"title":"DI-VTR:用于视频文本检索的双模态交互模型","authors":"","doi":"10.1016/j.jiixd.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Video-text retrieval is a challenging task for multimodal information processing due to the semantic gap between different modalities. However, most existing methods do not fully mine the intra-modal interactions, as with the temporal correlation of video frames, which results in poor matching performance. Additionally, the imbalanced semantic information between videos and texts also leads to difficulty in the alignment of the two modalities. To this end, we propose a dual inter-modal interaction network for video-text retrieval, i.e., DI-VTR. To learn the intra-modal interaction of video frames, we design a contextual-related video encoder to obtain more fine-grained content-oriented video representations. We also propose a dual inter-modal interaction module to accomplish accurate multilingual alignment between the video and text modalities by introducing multilingual text to improve the representation ability of text semantic features. Extensive experimental results on commonly-used video-text retrieval datasets, including MSR-VTT, MSVD and VATEX, show that the proposed method achieves significantly improved performance compared with state-of-the-art methods.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 5","pages":"Pages 388-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294971592400026X/pdfft?md5=99a5f02c39ebbf60a2f3d5a6ebd243c0&pid=1-s2.0-S294971592400026X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"DI-VTR: Dual inter-modal interaction model for video-text retrieval\",\"authors\":\"\",\"doi\":\"10.1016/j.jiixd.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Video-text retrieval is a challenging task for multimodal information processing due to the semantic gap between different modalities. However, most existing methods do not fully mine the intra-modal interactions, as with the temporal correlation of video frames, which results in poor matching performance. Additionally, the imbalanced semantic information between videos and texts also leads to difficulty in the alignment of the two modalities. To this end, we propose a dual inter-modal interaction network for video-text retrieval, i.e., DI-VTR. To learn the intra-modal interaction of video frames, we design a contextual-related video encoder to obtain more fine-grained content-oriented video representations. We also propose a dual inter-modal interaction module to accomplish accurate multilingual alignment between the video and text modalities by introducing multilingual text to improve the representation ability of text semantic features. Extensive experimental results on commonly-used video-text retrieval datasets, including MSR-VTT, MSVD and VATEX, show that the proposed method achieves significantly improved performance compared with state-of-the-art methods.</p></div>\",\"PeriodicalId\":100790,\"journal\":{\"name\":\"Journal of Information and Intelligence\",\"volume\":\"2 5\",\"pages\":\"Pages 388-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294971592400026X/pdfft?md5=99a5f02c39ebbf60a2f3d5a6ebd243c0&pid=1-s2.0-S294971592400026X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294971592400026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971592400026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DI-VTR: Dual inter-modal interaction model for video-text retrieval
Video-text retrieval is a challenging task for multimodal information processing due to the semantic gap between different modalities. However, most existing methods do not fully mine the intra-modal interactions, as with the temporal correlation of video frames, which results in poor matching performance. Additionally, the imbalanced semantic information between videos and texts also leads to difficulty in the alignment of the two modalities. To this end, we propose a dual inter-modal interaction network for video-text retrieval, i.e., DI-VTR. To learn the intra-modal interaction of video frames, we design a contextual-related video encoder to obtain more fine-grained content-oriented video representations. We also propose a dual inter-modal interaction module to accomplish accurate multilingual alignment between the video and text modalities by introducing multilingual text to improve the representation ability of text semantic features. Extensive experimental results on commonly-used video-text retrieval datasets, including MSR-VTT, MSVD and VATEX, show that the proposed method achieves significantly improved performance compared with state-of-the-art methods.