关于采用人工智能算法自动分割内脏器官的研究。

Alberto Mastrodonato, Maria Urbano
{"title":"关于采用人工智能算法自动分割内脏器官的研究。","authors":"Alberto Mastrodonato, Maria Urbano","doi":"10.36017/jahc202461282","DOIUrl":null,"url":null,"abstract":"The study aimed to automate CT organ segmentation using image processing and machine learning. The process involved data acquisition, labeling, neural network training, validation, testing, segmentation, analysis, interpretation, feedback, improvement, documentation, and sharing. Analyzing 20 anonymized patients on two high-performance workstations, segmenting thoraco-abdominal regions, liver, and spleen using 3D SLICER and plugins. Repeatability tests using \"Autodesk Meshmixer\" and \"Prusa Slicer\" revealed workstation 2 took nearly three times longer in 'fast' mode and 13 times longer in 'normal' mode compared to workstation 1. In conclusion, the study explored AI for organ segmentation, showing efficiency and potential cost reduction. Legal, ethical, and technical challenges include privacy concerns, professional responsibility, and the need for annotated data. Interoperability, adaptability, staff training, and continuous monitoring are crucial for AI effectiveness and safety in clinical settings. Despite challenges, AI proves valuable for precise, timely medicine, supporting medical personnel.","PeriodicalId":14873,"journal":{"name":"Journal of Advanced Health Care","volume":"46 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the adoption of an artificial intelligence algorithm for the automatic segmentation of visceral organs.\",\"authors\":\"Alberto Mastrodonato, Maria Urbano\",\"doi\":\"10.36017/jahc202461282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aimed to automate CT organ segmentation using image processing and machine learning. The process involved data acquisition, labeling, neural network training, validation, testing, segmentation, analysis, interpretation, feedback, improvement, documentation, and sharing. Analyzing 20 anonymized patients on two high-performance workstations, segmenting thoraco-abdominal regions, liver, and spleen using 3D SLICER and plugins. Repeatability tests using \\\"Autodesk Meshmixer\\\" and \\\"Prusa Slicer\\\" revealed workstation 2 took nearly three times longer in 'fast' mode and 13 times longer in 'normal' mode compared to workstation 1. In conclusion, the study explored AI for organ segmentation, showing efficiency and potential cost reduction. Legal, ethical, and technical challenges include privacy concerns, professional responsibility, and the need for annotated data. Interoperability, adaptability, staff training, and continuous monitoring are crucial for AI effectiveness and safety in clinical settings. Despite challenges, AI proves valuable for precise, timely medicine, supporting medical personnel.\",\"PeriodicalId\":14873,\"journal\":{\"name\":\"Journal of Advanced Health Care\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36017/jahc202461282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36017/jahc202461282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究旨在利用图像处理和机器学习实现 CT 器官分割自动化。整个过程包括数据采集、标记、神经网络训练、验证、测试、分割、分析、解释、反馈、改进、记录和共享。在两台高性能工作站上分析 20 名匿名患者,使用 3D SLICER 和插件分割胸腹区域、肝脏和脾脏。使用 "Autodesk Meshmixer "和 "Prusa Slicer "进行的重复性测试表明,与工作站 1 相比,工作站 2 在 "快速 "模式下花费的时间长了近三倍,在 "正常 "模式下花费的时间长了 13 倍。总之,这项研究探索了用于器官分割的人工智能,显示了效率和降低成本的潜力。法律、伦理和技术方面的挑战包括隐私问题、职业责任以及对注释数据的需求。互操作性、适应性、人员培训和持续监控对于人工智能在临床环境中的有效性和安全性至关重要。尽管存在挑战,但人工智能证明了其在精确、及时的医疗和支持医务人员方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the adoption of an artificial intelligence algorithm for the automatic segmentation of visceral organs.
The study aimed to automate CT organ segmentation using image processing and machine learning. The process involved data acquisition, labeling, neural network training, validation, testing, segmentation, analysis, interpretation, feedback, improvement, documentation, and sharing. Analyzing 20 anonymized patients on two high-performance workstations, segmenting thoraco-abdominal regions, liver, and spleen using 3D SLICER and plugins. Repeatability tests using "Autodesk Meshmixer" and "Prusa Slicer" revealed workstation 2 took nearly three times longer in 'fast' mode and 13 times longer in 'normal' mode compared to workstation 1. In conclusion, the study explored AI for organ segmentation, showing efficiency and potential cost reduction. Legal, ethical, and technical challenges include privacy concerns, professional responsibility, and the need for annotated data. Interoperability, adaptability, staff training, and continuous monitoring are crucial for AI effectiveness and safety in clinical settings. Despite challenges, AI proves valuable for precise, timely medicine, supporting medical personnel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信