围墙定律与冯-卡曼常数:一场持续不断的争论

Fluids Pub Date : 2024-03-04 DOI:10.3390/fluids9030063
Stefan Heinz
{"title":"围墙定律与冯-卡曼常数:一场持续不断的争论","authors":"Stefan Heinz","doi":"10.3390/fluids9030063","DOIUrl":null,"url":null,"abstract":"The discovery of the law of the wall, the log-law including the von Kármán constant, is seen to be one of the biggest accomplishments of fluid mechanics. However, after more than ninety years, there is still a controversial debate about the validity and universality of the law of the wall. In particular, evidence in favor of a universal log-law was recently questioned by data analyses of the majority of existing direct numerical simulation (DNS) and experimental results, arguing in favor of nonuniversality of the law of the wall. Future progress requires it to resolve this discrepancy: in absence of alternatives, a reliable and universal theory involving the law of the wall is needed to provide essential guideline for the validation of theory, computational methods, and experimental studies of very high Reynolds number flows. This paper presents an analysis of concepts used to derive controversial conclusions. Similar to the analysis of observed variations of the Kolmogorov constant, it is shown that nonuniversality is a consequence of simplified modeling concepts, leading to unrealizable models. Realizability implies universality: there is no need to adjust simplified models to different flows.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"2 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Law of the Wall and von Kármán Constant: An Ongoing Controversial Debate\",\"authors\":\"Stefan Heinz\",\"doi\":\"10.3390/fluids9030063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of the law of the wall, the log-law including the von Kármán constant, is seen to be one of the biggest accomplishments of fluid mechanics. However, after more than ninety years, there is still a controversial debate about the validity and universality of the law of the wall. In particular, evidence in favor of a universal log-law was recently questioned by data analyses of the majority of existing direct numerical simulation (DNS) and experimental results, arguing in favor of nonuniversality of the law of the wall. Future progress requires it to resolve this discrepancy: in absence of alternatives, a reliable and universal theory involving the law of the wall is needed to provide essential guideline for the validation of theory, computational methods, and experimental studies of very high Reynolds number flows. This paper presents an analysis of concepts used to derive controversial conclusions. Similar to the analysis of observed variations of the Kolmogorov constant, it is shown that nonuniversality is a consequence of simplified modeling concepts, leading to unrealizable models. Realizability implies universality: there is no need to adjust simplified models to different flows.\",\"PeriodicalId\":510749,\"journal\":{\"name\":\"Fluids\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9030063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9030063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

壁面定律(包括冯-卡尔曼常数在内的对数定律)的发现被视为流体力学的最大成就之一。然而,九十多年过去了,关于壁面定律的有效性和普遍性仍存在争议。特别是,最近对大多数现有的直接数值模拟(DNS)和实验结果进行的数据分析对支持普遍对数定律的证据提出了质疑,认为壁面定律不具有普遍性。未来的发展需要解决这一分歧:在没有替代方案的情况下,需要一个可靠的、通用的壁面定律理论,为验证理论、计算方法和超高雷诺数流动的实验研究提供重要指导。本文对用于得出有争议结论的概念进行了分析。与对观测到的科尔莫哥罗夫常数变化的分析类似,本文表明,非普遍性是简化建模概念的结果,导致无法实现的模型。可实现性意味着普遍性:没有必要根据不同的流量调整简化模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Law of the Wall and von Kármán Constant: An Ongoing Controversial Debate
The discovery of the law of the wall, the log-law including the von Kármán constant, is seen to be one of the biggest accomplishments of fluid mechanics. However, after more than ninety years, there is still a controversial debate about the validity and universality of the law of the wall. In particular, evidence in favor of a universal log-law was recently questioned by data analyses of the majority of existing direct numerical simulation (DNS) and experimental results, arguing in favor of nonuniversality of the law of the wall. Future progress requires it to resolve this discrepancy: in absence of alternatives, a reliable and universal theory involving the law of the wall is needed to provide essential guideline for the validation of theory, computational methods, and experimental studies of very high Reynolds number flows. This paper presents an analysis of concepts used to derive controversial conclusions. Similar to the analysis of observed variations of the Kolmogorov constant, it is shown that nonuniversality is a consequence of simplified modeling concepts, leading to unrealizable models. Realizability implies universality: there is no need to adjust simplified models to different flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信