应用 RFID 和 NLP 实现高效仓库拣选

Man Xu, Yunze Wang, Dan Xing
{"title":"应用 RFID 和 NLP 实现高效仓库拣选","authors":"Man Xu, Yunze Wang, Dan Xing","doi":"10.3233/rft-230055","DOIUrl":null,"url":null,"abstract":" This paper proposes an intelligent warehouse-picking approach using radio frequency identification (RFID) indoor positioning and natural language processing (NLP) speech recognition. A forward maximum matching algorithm segments speech into domain terminology. Location was estimated by RFID signal strengths between reference tags and pickers. Simulation results demonstrated a 50% reduction in segmentation runtime versus conventional methods. Speech recognition accuracy reached 90–95%, improving by 23% over baseline. Positioning accuracy also increased substantially. The techniques can reduce picking errors and costs. Further work should evaluate performance in real-world environments.","PeriodicalId":507653,"journal":{"name":"International Journal of RF Technologies","volume":"30 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying RFID and NLP for efficient warehouse picking\",\"authors\":\"Man Xu, Yunze Wang, Dan Xing\",\"doi\":\"10.3233/rft-230055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" This paper proposes an intelligent warehouse-picking approach using radio frequency identification (RFID) indoor positioning and natural language processing (NLP) speech recognition. A forward maximum matching algorithm segments speech into domain terminology. Location was estimated by RFID signal strengths between reference tags and pickers. Simulation results demonstrated a 50% reduction in segmentation runtime versus conventional methods. Speech recognition accuracy reached 90–95%, improving by 23% over baseline. Positioning accuracy also increased substantially. The techniques can reduce picking errors and costs. Further work should evaluate performance in real-world environments.\",\"PeriodicalId\":507653,\"journal\":{\"name\":\"International Journal of RF Technologies\",\"volume\":\"30 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/rft-230055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/rft-230055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用射频识别(RFID)室内定位和自然语言处理(NLP)语音识别的智能仓库拣选方法。前向最大匹配算法将语音分割为领域术语。通过参考标签和拣货员之间的 RFID 信号强度来估计位置。模拟结果表明,与传统方法相比,分段运行时间缩短了 50%。语音识别准确率达到 90-95%,比基线提高了 23%。定位精度也大幅提高。这些技术可以减少分拣错误,降低成本。进一步的工作应评估在实际环境中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying RFID and NLP for efficient warehouse picking
 This paper proposes an intelligent warehouse-picking approach using radio frequency identification (RFID) indoor positioning and natural language processing (NLP) speech recognition. A forward maximum matching algorithm segments speech into domain terminology. Location was estimated by RFID signal strengths between reference tags and pickers. Simulation results demonstrated a 50% reduction in segmentation runtime versus conventional methods. Speech recognition accuracy reached 90–95%, improving by 23% over baseline. Positioning accuracy also increased substantially. The techniques can reduce picking errors and costs. Further work should evaluate performance in real-world environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信